Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem20 Structured version   Visualization version   GIF version

Theorem dalem20 35706
Description: Lemma for dath 35749. Show that a second dummy atom 𝑑 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem20.o 𝑂 = (LPlanes‘𝐾)
dalem20.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem20.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem20 ((𝜑𝑌 = 𝑍) → ∃𝑐𝑑𝜓)
Distinct variable groups:   𝑐,𝑑,𝐴   𝐶,𝑑   𝐾,𝑑   ,𝑐,𝑑   𝑌,𝑐,𝑑   ,𝑐   𝑃,𝑐   𝑄,𝑐   𝑅,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝜓(𝑐,𝑑)   𝐶(𝑐)   𝑃(𝑑)   𝑄(𝑑)   𝑅(𝑑)   𝑆(𝑐,𝑑)   𝑇(𝑐,𝑑)   𝑈(𝑐,𝑑)   (𝑑)   𝐾(𝑐)   𝑂(𝑐,𝑑)   𝑍(𝑑)

Proof of Theorem dalem20
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 dalem20.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
61, 2, 3, 4, 5dalem18 35694 . . . 4 (𝜑 → ∃𝑐𝐴 ¬ 𝑐 𝑌)
76adantr 473 . . 3 ((𝜑𝑌 = 𝑍) → ∃𝑐𝐴 ¬ 𝑐 𝑌)
8 dalem20.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
9 dalem20.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
101, 2, 3, 4, 8, 5, 9dalem19 35695 . . . . . 6 ((((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) ∧ ¬ 𝑐 𝑌) → ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))
1110ex 402 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) → (¬ 𝑐 𝑌 → ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
1211ancld 547 . . . 4 (((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) → (¬ 𝑐 𝑌 → (¬ 𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
1312reximdva 3195 . . 3 ((𝜑𝑌 = 𝑍) → (∃𝑐𝐴 ¬ 𝑐 𝑌 → ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
147, 13mpd 15 . 2 ((𝜑𝑌 = 𝑍) → ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
15 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
16 3anass 1117 . . . . 5 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
1715, 16bitri 267 . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
18172exbii 1945 . . 3 (∃𝑐𝑑𝜓 ↔ ∃𝑐𝑑((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
19 r2ex 3240 . . 3 (∃𝑐𝐴𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝑑((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
20 r19.42v 3271 . . . 4 (∃𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ (¬ 𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2120rexbii 3220 . . 3 (∃𝑐𝐴𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2218, 19, 213bitr2ri 292 . 2 (∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝑑𝜓)
2314, 22sylib 210 1 ((𝜑𝑌 = 𝑍) → ∃𝑐𝑑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wne 2969  wrex 3088   class class class wbr 4841  cfv 6099  (class class class)co 6876  Basecbs 16181  lecple 16271  joincjn 17256  Atomscatm 35276  HLchlt 35363  LPlanesclpl 35505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-proset 17240  df-poset 17258  df-plt 17270  df-lub 17286  df-glb 17287  df-join 17288  df-meet 17289  df-p0 17351  df-p1 17352  df-lat 17358  df-clat 17420  df-oposet 35189  df-ol 35191  df-oml 35192  df-covers 35279  df-ats 35280  df-atl 35311  df-cvlat 35335  df-hlat 35364  df-llines 35511  df-lplanes 35512
This theorem is referenced by:  dalem62  35747
  Copyright terms: Public domain W3C validator