Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem20 Structured version   Visualization version   GIF version

Theorem dalem20 39695
Description: Lemma for dath 39738. Show that a second dummy atom 𝑑 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem20.o 𝑂 = (LPlanes‘𝐾)
dalem20.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem20.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem20 ((𝜑𝑌 = 𝑍) → ∃𝑐𝑑𝜓)
Distinct variable groups:   𝑐,𝑑,𝐴   𝐶,𝑑   𝐾,𝑑   ,𝑐,𝑑   𝑌,𝑐,𝑑   ,𝑐   𝑃,𝑐   𝑄,𝑐   𝑅,𝑐   𝑍,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝜓(𝑐,𝑑)   𝐶(𝑐)   𝑃(𝑑)   𝑄(𝑑)   𝑅(𝑑)   𝑆(𝑐,𝑑)   𝑇(𝑐,𝑑)   𝑈(𝑐,𝑑)   (𝑑)   𝐾(𝑐)   𝑂(𝑐,𝑑)   𝑍(𝑑)

Proof of Theorem dalem20
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 dalem20.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
61, 2, 3, 4, 5dalem18 39683 . . . 4 (𝜑 → ∃𝑐𝐴 ¬ 𝑐 𝑌)
76adantr 480 . . 3 ((𝜑𝑌 = 𝑍) → ∃𝑐𝐴 ¬ 𝑐 𝑌)
8 dalem20.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
9 dalem20.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
101, 2, 3, 4, 8, 5, 9dalem19 39684 . . . . . 6 ((((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) ∧ ¬ 𝑐 𝑌) → ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))
1110ex 412 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) → (¬ 𝑐 𝑌 → ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
1211ancld 550 . . . 4 (((𝜑𝑌 = 𝑍) ∧ 𝑐𝐴) → (¬ 𝑐 𝑌 → (¬ 𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
1312reximdva 3168 . . 3 ((𝜑𝑌 = 𝑍) → (∃𝑐𝐴 ¬ 𝑐 𝑌 → ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
147, 13mpd 15 . 2 ((𝜑𝑌 = 𝑍) → ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
15 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
16 3anass 1095 . . . . 5 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
1715, 16bitri 275 . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
18172exbii 1849 . . 3 (∃𝑐𝑑𝜓 ↔ ∃𝑐𝑑((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
19 r2ex 3196 . . 3 (∃𝑐𝐴𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝑑((𝑐𝐴𝑑𝐴) ∧ (¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑)))))
20 r19.42v 3191 . . . 4 (∃𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ (¬ 𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2120rexbii 3094 . . 3 (∃𝑐𝐴𝑑𝐴𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2218, 19, 213bitr2ri 300 . 2 (∃𝑐𝐴𝑐 𝑌 ∧ ∃𝑑𝐴 (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) ↔ ∃𝑐𝑑𝜓)
2314, 22sylib 218 1 ((𝜑𝑌 = 𝑍) → ∃𝑐𝑑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351  LPlanesclpl 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501
This theorem is referenced by:  dalem62  39736
  Copyright terms: Public domain W3C validator