MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrel Structured version   Visualization version   GIF version

Theorem nbgrel 27707
Description: Characterization of a neighbor 𝑁 of a vertex 𝑋 in a graph 𝐺. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
nbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbgrel (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑋   𝑒,𝑉

Proof of Theorem nbgrel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrcl 27702 . . 3 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
32pm4.71ri 561 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)))
4 nbgrel.e . . . . . . 7 𝐸 = (Edg‘𝐺)
51, 4nbgrval 27703 . . . . . 6 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒})
65eleq2d 2824 . . . . 5 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
7 preq2 4670 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁})
87sseq1d 3952 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒))
98rexbidv 3226 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
109elrab 3624 . . . . . 6 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
11 eldifsn 4720 . . . . . . 7 (𝑁 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑁𝑉𝑁𝑋))
1211anbi1i 624 . . . . . 6 ((𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1310, 12bitri 274 . . . . 5 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
146, 13bitrdi 287 . . . 4 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
1514pm5.32i 575 . . 3 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
16 df-3an 1088 . . . 4 (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
17 anass 469 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ (𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)))
18 ancom 461 . . . . . . 7 ((𝑋𝑉𝑁𝑉) ↔ (𝑁𝑉𝑋𝑉))
1918anbi1i 624 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2017, 19bitr3i 276 . . . . 5 ((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2120anbi1i 624 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
22 anass 469 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2316, 21, 223bitr2ri 300 . . 3 ((𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2415, 23bitri 274 . 2 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
253, 24bitri 274 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-nbgr 27700
This theorem is referenced by:  nbgrisvtx  27708  nbgr2vtx1edg  27717  nbuhgr2vtx1edgblem  27718  nbuhgr2vtx1edgb  27719  nbgrsym  27730  isuvtx  27762  iscplgredg  27784  cusgrexi  27810  structtocusgr  27813
  Copyright terms: Public domain W3C validator