MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrel Structured version   Visualization version   GIF version

Theorem nbgrel 29243
Description: Characterization of a neighbor 𝑁 of a vertex 𝑋 in a graph 𝐺. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
nbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbgrel (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑋   𝑒,𝑉

Proof of Theorem nbgrel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrcl 29238 . . 3 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
32pm4.71ri 560 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)))
4 nbgrel.e . . . . . . 7 𝐸 = (Edg‘𝐺)
51, 4nbgrval 29239 . . . . . 6 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒})
65eleq2d 2814 . . . . 5 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
7 preq2 4694 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁})
87sseq1d 3975 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒))
98rexbidv 3157 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
109elrab 3656 . . . . . 6 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
11 eldifsn 4746 . . . . . . 7 (𝑁 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑁𝑉𝑁𝑋))
1211anbi1i 624 . . . . . 6 ((𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1310, 12bitri 275 . . . . 5 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
146, 13bitrdi 287 . . . 4 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
1514pm5.32i 574 . . 3 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
16 df-3an 1088 . . . 4 (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
17 anass 468 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ (𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)))
18 ancom 460 . . . . . . 7 ((𝑋𝑉𝑁𝑉) ↔ (𝑁𝑉𝑋𝑉))
1918anbi1i 624 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2017, 19bitr3i 277 . . . . 5 ((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2120anbi1i 624 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
22 anass 468 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2316, 21, 223bitr2ri 300 . . 3 ((𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2415, 23bitri 275 . 2 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
253, 24bitri 275 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  cdif 3908  wss 3911  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950   NeighbVtx cnbgr 29235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-nbgr 29236
This theorem is referenced by:  nbgrisvtx  29244  nbgr2vtx1edg  29253  nbuhgr2vtx1edgblem  29254  nbuhgr2vtx1edgb  29255  nbgrsym  29266  isuvtx  29298  iscplgredg  29320  cusgrexi  29346  structtocusgr  29349  dfvopnbgr2  47826
  Copyright terms: Public domain W3C validator