MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrel Structured version   Visualization version   GIF version

Theorem nbgrel 29267
Description: Characterization of a neighbor 𝑁 of a vertex 𝑋 in a graph 𝐺. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Revised by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
nbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbgrel (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑋   𝑒,𝑉

Proof of Theorem nbgrel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrcl 29262 . . 3 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
32pm4.71ri 560 . 2 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)))
4 nbgrel.e . . . . . . 7 𝐸 = (Edg‘𝐺)
51, 4nbgrval 29263 . . . . . 6 (𝑋𝑉 → (𝐺 NeighbVtx 𝑋) = {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒})
65eleq2d 2814 . . . . 5 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
7 preq2 4698 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁})
87sseq1d 3978 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒))
98rexbidv 3157 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
109elrab 3659 . . . . . 6 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
11 eldifsn 4750 . . . . . . 7 (𝑁 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑁𝑉𝑁𝑋))
1211anbi1i 624 . . . . . 6 ((𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1310, 12bitri 275 . . . . 5 (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
146, 13bitrdi 287 . . . 4 (𝑋𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
1514pm5.32i 574 . . 3 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
16 df-3an 1088 . . . 4 (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
17 anass 468 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ (𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)))
18 ancom 460 . . . . . . 7 ((𝑋𝑉𝑁𝑉) ↔ (𝑁𝑉𝑋𝑉))
1918anbi1i 624 . . . . . 6 (((𝑋𝑉𝑁𝑉) ∧ 𝑁𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2017, 19bitr3i 277 . . . . 5 ((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋))
2120anbi1i 624 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
22 anass 468 . . . 4 (((𝑋𝑉 ∧ (𝑁𝑉𝑁𝑋)) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2316, 21, 223bitr2ri 300 . . 3 ((𝑋𝑉 ∧ ((𝑁𝑉𝑁𝑋) ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2415, 23bitri 275 . 2 ((𝑋𝑉𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
253, 24bitri 275 1 (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ 𝑁𝑋 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-nbgr 29260
This theorem is referenced by:  nbgrisvtx  29268  nbgr2vtx1edg  29277  nbuhgr2vtx1edgblem  29278  nbuhgr2vtx1edgb  29279  nbgrsym  29290  isuvtx  29322  iscplgredg  29344  cusgrexi  29370  structtocusgr  29373  dfvopnbgr2  47853
  Copyright terms: Public domain W3C validator