Step | Hyp | Ref
| Expression |
1 | | nbgrel.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | nbgrcl 27605 |
. . 3
⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
3 | 2 | pm4.71ri 560 |
. 2
⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝑋))) |
4 | | nbgrel.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
5 | 1, 4 | nbgrval 27606 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝐺 NeighbVtx 𝑋) = {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) |
6 | 5 | eleq2d 2824 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒})) |
7 | | preq2 4667 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁}) |
8 | 7 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒)) |
9 | 8 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
10 | 9 | elrab 3617 |
. . . . . 6
⊢ (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
11 | | eldifsn 4717 |
. . . . . . 7
⊢ (𝑁 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋)) |
12 | 11 | anbi1i 623 |
. . . . . 6
⊢ ((𝑁 ∈ (𝑉 ∖ {𝑋}) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
13 | 10, 12 | bitri 274 |
. . . . 5
⊢ (𝑁 ∈ {𝑛 ∈ (𝑉 ∖ {𝑋}) ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
14 | 6, 13 | bitrdi 286 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
15 | 14 | pm5.32i 574 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ (𝑋 ∈ 𝑉 ∧ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
16 | | df-3an 1087 |
. . . 4
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
17 | | anass 468 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋))) |
18 | | ancom 460 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ (𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
19 | 18 | anbi1i 623 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋)) |
20 | 17, 19 | bitr3i 276 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋)) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋)) |
21 | 20 | anbi1i 623 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋)) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
22 | | anass 468 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋)) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) ↔ (𝑋 ∈ 𝑉 ∧ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
23 | 16, 21, 22 | 3bitr2ri 299 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋) ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
24 | 15, 23 | bitri 274 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
25 | 3, 24 | bitri 274 |
1
⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 ≠ 𝑋 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |