Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrecs2 Structured version   Visualization version   GIF version

Theorem dfrecs2 35914
Description: A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.)
Assertion
Ref Expression
dfrecs2 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))

Proof of Theorem dfrecs2
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrecs3 8428 . 2 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 elin 3992 . . . . . . . . 9 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
3 vex 3492 . . . . . . . . . . 11 𝑓 ∈ V
43elfuns 35879 . . . . . . . . . 10 (𝑓 Funs ↔ Fun 𝑓)
5 vex 3492 . . . . . . . . . . . . . 14 𝑥 ∈ V
65, 3brcnv 5907 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑓Domain𝑥)
73, 5brdomain 35897 . . . . . . . . . . . . 13 (𝑓Domain𝑥𝑥 = dom 𝑓)
86, 7bitri 275 . . . . . . . . . . . 12 (𝑥Domain𝑓𝑥 = dom 𝑓)
98rexbii 3100 . . . . . . . . . . 11 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
103elima 6094 . . . . . . . . . . 11 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
11 risset 3239 . . . . . . . . . . 11 (dom 𝑓 ∈ On ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
129, 10, 113bitr4i 303 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
134, 12anbi12i 627 . . . . . . . . 9 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
142, 13bitri 275 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
153eldm 5925 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦)
16 brdif 5219 . . . . . . . . . . . . 13 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦))
17 vex 3492 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
183, 17brco 5895 . . . . . . . . . . . . . . 15 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
197anbi1i 623 . . . . . . . . . . . . . . . . 17 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
2019exbii 1846 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
213dmex 7949 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
22 breq1 5169 . . . . . . . . . . . . . . . . 17 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
2321, 22ceqsexv 3542 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2420, 23bitri 275 . . . . . . . . . . . . . . 15 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2521, 17brcnv 5907 . . . . . . . . . . . . . . . 16 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
2621epeli 5601 . . . . . . . . . . . . . . . 16 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
2725, 26bitri 275 . . . . . . . . . . . . . . 15 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
2818, 24, 273bitri 297 . . . . . . . . . . . . . 14 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
29 df-br 5167 . . . . . . . . . . . . . . . 16 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))
30 opex 5484 . . . . . . . . . . . . . . . . 17 𝑓, 𝑦⟩ ∈ V
3130elfix 35867 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩)
3230, 30brco 5895 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩))
33 ancom 460 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
345, 30brcnv 5907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
353, 17, 5brapply 35902 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
3634, 35bitri 275 . . . . . . . . . . . . . . . . . . . . 21 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
3736anbi1i 623 . . . . . . . . . . . . . . . . . . . 20 ((𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3833, 37bitri 275 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3938exbii 1846 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
40 fvex 6933 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑦) ∈ V
41 breq2 5170 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑦) → (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥 ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦)))
4240, 41ceqsexv 3542 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4339, 42bitri 275 . . . . . . . . . . . . . . . . 17 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4430, 40brco 5895 . . . . . . . . . . . . . . . . . 18 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ ∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)))
453, 17, 5brrestrict 35913 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑓, 𝑦⟩Restrict𝑥𝑥 = (𝑓𝑦))
4645anbi1i 623 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
4746exbii 1846 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
483resex 6058 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
49 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑦) → (𝑥FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦)))
5048, 49ceqsexv 3542 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5147, 50bitri 275 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5248, 40brfullfun 35912 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦)FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5344, 51, 523bitri 297 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5432, 43, 533bitri 297 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5529, 31, 543bitri 297 . . . . . . . . . . . . . . 15 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5655notbii 320 . . . . . . . . . . . . . 14 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5728, 56anbi12i 627 . . . . . . . . . . . . 13 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5816, 57bitri 275 . . . . . . . . . . . 12 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958exbii 1846 . . . . . . . . . . 11 (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6015, 59bitri 275 . . . . . . . . . 10 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
61 df-rex 3077 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
62 rexnal 3106 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6360, 61, 623bitr2ri 300 . . . . . . . . 9 (¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
6463con1bii 356 . . . . . . . 8 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6514, 64anbi12i 627 . . . . . . 7 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
66 anass 468 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
6765, 66bitri 275 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
68 eleq1 2832 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
69 raleq 3331 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
7068, 69anbi12d 631 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7170anbi2d 629 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
7221, 71ceqsexv 3542 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
73 df-fn 6576 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
74 eqcom 2747 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
7574anbi2i 622 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (Fun 𝑓𝑥 = dom 𝑓))
76 ancom 460 . . . . . . . . . 10 ((Fun 𝑓𝑥 = dom 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7773, 75, 763bitri 297 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7877anbi1i 623 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
79 an12 644 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
80 anass 468 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
8178, 79, 803bitr3ri 302 . . . . . . 7 ((𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8281exbii 1846 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8367, 72, 823bitr2i 299 . . . . 5 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
84 eldif 3986 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))))
85 df-rex 3077 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8683, 84, 853bitr4i 303 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
8786eqabi 2880 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
8887unieqi 4943 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
891, 88eqtr4i 2771 1 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  cdif 3973  cin 3975  cop 4654   cuni 4931   class class class wbr 5166   E cep 5598  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  ccom 5704  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  cfv 6573  recscrecs 8426   Fix cfix 35799   Funs cfuns 35801  Domaincdomain 35807  Applycapply 35809  FullFuncfullfn 35814  Restrictcrestrict 35815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-txp 35818  df-pprod 35819  df-bigcup 35822  df-fix 35823  df-funs 35825  df-singleton 35826  df-singles 35827  df-image 35828  df-cart 35829  df-img 35830  df-domain 35831  df-range 35832  df-cap 35834  df-restrict 35835  df-apply 35837  df-funpart 35838  df-fullfun 35839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator