Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrecs2 Structured version   Visualization version   GIF version

Theorem dfrecs2 34179
Description: A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.)
Assertion
Ref Expression
dfrecs2 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))

Proof of Theorem dfrecs2
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrecs3 8174 . 2 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 elin 3899 . . . . . . . . 9 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
3 vex 3426 . . . . . . . . . . 11 𝑓 ∈ V
43elfuns 34144 . . . . . . . . . 10 (𝑓 Funs ↔ Fun 𝑓)
5 vex 3426 . . . . . . . . . . . . . 14 𝑥 ∈ V
65, 3brcnv 5780 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑓Domain𝑥)
73, 5brdomain 34162 . . . . . . . . . . . . 13 (𝑓Domain𝑥𝑥 = dom 𝑓)
86, 7bitri 274 . . . . . . . . . . . 12 (𝑥Domain𝑓𝑥 = dom 𝑓)
98rexbii 3177 . . . . . . . . . . 11 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
103elima 5963 . . . . . . . . . . 11 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
11 risset 3193 . . . . . . . . . . 11 (dom 𝑓 ∈ On ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
129, 10, 113bitr4i 302 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
134, 12anbi12i 626 . . . . . . . . 9 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
142, 13bitri 274 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
153eldm 5798 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦)
16 brdif 5123 . . . . . . . . . . . . 13 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦))
17 vex 3426 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
183, 17brco 5768 . . . . . . . . . . . . . . 15 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
197anbi1i 623 . . . . . . . . . . . . . . . . 17 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
2019exbii 1851 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
213dmex 7732 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
22 breq1 5073 . . . . . . . . . . . . . . . . 17 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
2321, 22ceqsexv 3469 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2420, 23bitri 274 . . . . . . . . . . . . . . 15 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2521, 17brcnv 5780 . . . . . . . . . . . . . . . 16 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
2621epeli 5488 . . . . . . . . . . . . . . . 16 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
2725, 26bitri 274 . . . . . . . . . . . . . . 15 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
2818, 24, 273bitri 296 . . . . . . . . . . . . . 14 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
29 df-br 5071 . . . . . . . . . . . . . . . 16 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))
30 opex 5373 . . . . . . . . . . . . . . . . 17 𝑓, 𝑦⟩ ∈ V
3130elfix 34132 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩)
3230, 30brco 5768 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩))
33 ancom 460 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
345, 30brcnv 5780 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
353, 17, 5brapply 34167 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
3634, 35bitri 274 . . . . . . . . . . . . . . . . . . . . 21 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
3736anbi1i 623 . . . . . . . . . . . . . . . . . . . 20 ((𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3833, 37bitri 274 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3938exbii 1851 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
40 fvex 6769 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑦) ∈ V
41 breq2 5074 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑦) → (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥 ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦)))
4240, 41ceqsexv 3469 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4339, 42bitri 274 . . . . . . . . . . . . . . . . 17 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4430, 40brco 5768 . . . . . . . . . . . . . . . . . 18 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ ∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)))
453, 17, 5brrestrict 34178 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑓, 𝑦⟩Restrict𝑥𝑥 = (𝑓𝑦))
4645anbi1i 623 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
4746exbii 1851 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
483resex 5928 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
49 breq1 5073 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑦) → (𝑥FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦)))
5048, 49ceqsexv 3469 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5147, 50bitri 274 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5248, 40brfullfun 34177 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦)FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5344, 51, 523bitri 296 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5432, 43, 533bitri 296 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5529, 31, 543bitri 296 . . . . . . . . . . . . . . 15 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5655notbii 319 . . . . . . . . . . . . . 14 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5728, 56anbi12i 626 . . . . . . . . . . . . 13 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5816, 57bitri 274 . . . . . . . . . . . 12 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958exbii 1851 . . . . . . . . . . 11 (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6015, 59bitri 274 . . . . . . . . . 10 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
61 df-rex 3069 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
62 rexnal 3165 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6360, 61, 623bitr2ri 299 . . . . . . . . 9 (¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
6463con1bii 356 . . . . . . . 8 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6514, 64anbi12i 626 . . . . . . 7 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
66 anass 468 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
6765, 66bitri 274 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
68 eleq1 2826 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
69 raleq 3333 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
7068, 69anbi12d 630 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7170anbi2d 628 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
7221, 71ceqsexv 3469 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
73 df-fn 6421 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
74 eqcom 2745 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
7574anbi2i 622 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (Fun 𝑓𝑥 = dom 𝑓))
76 ancom 460 . . . . . . . . . 10 ((Fun 𝑓𝑥 = dom 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7773, 75, 763bitri 296 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7877anbi1i 623 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
79 an12 641 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
80 anass 468 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
8178, 79, 803bitr3ri 301 . . . . . . 7 ((𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8281exbii 1851 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8367, 72, 823bitr2i 298 . . . . 5 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
84 eldif 3893 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))))
85 df-rex 3069 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8683, 84, 853bitr4i 302 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
8786abbi2i 2878 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
8887unieqi 4849 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
891, 88eqtr4i 2769 1 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  cdif 3880  cin 3882  cop 4564   cuni 4836   class class class wbr 5070   E cep 5485  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  ccom 5584  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  cfv 6418  recscrecs 8172   Fix cfix 34064   Funs cfuns 34066  Domaincdomain 34072  Applycapply 34074  FullFuncfullfn 34079  Restrictcrestrict 34080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-txp 34083  df-pprod 34084  df-bigcup 34087  df-fix 34088  df-funs 34090  df-singleton 34091  df-singles 34092  df-image 34093  df-cart 34094  df-img 34095  df-domain 34096  df-range 34097  df-cap 34099  df-restrict 34100  df-apply 34102  df-funpart 34103  df-fullfun 34104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator