Step | Hyp | Ref
| Expression |
1 | | dfrecs3 8174 |
. 2
⊢
recs(𝐹) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ↔ (𝑓 ∈ Funs ∧ 𝑓 ∈ (◡Domain “ On))) |
3 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
4 | 3 | elfuns 34144 |
. . . . . . . . . 10
⊢ (𝑓 ∈
Funs ↔ Fun 𝑓) |
5 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
6 | 5, 3 | brcnv 5780 |
. . . . . . . . . . . . 13
⊢ (𝑥◡Domain𝑓 ↔ 𝑓Domain𝑥) |
7 | 3, 5 | brdomain 34162 |
. . . . . . . . . . . . 13
⊢ (𝑓Domain𝑥 ↔ 𝑥 = dom 𝑓) |
8 | 6, 7 | bitri 274 |
. . . . . . . . . . . 12
⊢ (𝑥◡Domain𝑓 ↔ 𝑥 = dom 𝑓) |
9 | 8 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈ On
𝑥◡Domain𝑓 ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓) |
10 | 3 | elima 5963 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (◡Domain “ On) ↔ ∃𝑥 ∈ On 𝑥◡Domain𝑓) |
11 | | risset 3193 |
. . . . . . . . . . 11
⊢ (dom
𝑓 ∈ On ↔
∃𝑥 ∈ On 𝑥 = dom 𝑓) |
12 | 9, 10, 11 | 3bitr4i 302 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (◡Domain “ On) ↔ dom 𝑓 ∈ On) |
13 | 4, 12 | anbi12i 626 |
. . . . . . . . 9
⊢ ((𝑓 ∈
Funs ∧ 𝑓 ∈
(◡Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) |
14 | 2, 13 | bitri 274 |
. . . . . . . 8
⊢ (𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ↔ (Fun 𝑓 ∧
dom 𝑓 ∈
On)) |
15 | 3 | eldm 5798 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict))) ↔ ∃𝑦
𝑓((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))𝑦) |
16 | | brdif 5123 |
. . . . . . . . . . . . 13
⊢ (𝑓((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))𝑦 ↔ (𝑓(◡ E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦)) |
17 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
18 | 3, 17 | brco 5768 |
. . . . . . . . . . . . . . 15
⊢ (𝑓(◡ E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥 ∧ 𝑥◡ E
𝑦)) |
19 | 7 | anbi1i 623 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓Domain𝑥 ∧ 𝑥◡ E
𝑦) ↔ (𝑥 = dom 𝑓 ∧ 𝑥◡ E
𝑦)) |
20 | 19 | exbii 1851 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥(𝑓Domain𝑥 ∧ 𝑥◡ E
𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓 ∧ 𝑥◡ E
𝑦)) |
21 | 3 | dmex 7732 |
. . . . . . . . . . . . . . . . 17
⊢ dom 𝑓 ∈ V |
22 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = dom 𝑓 → (𝑥◡ E
𝑦 ↔ dom 𝑓◡ E 𝑦)) |
23 | 21, 22 | ceqsexv 3469 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥(𝑥 = dom 𝑓 ∧ 𝑥◡ E
𝑦) ↔ dom 𝑓◡ E 𝑦) |
24 | 20, 23 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥(𝑓Domain𝑥 ∧ 𝑥◡ E
𝑦) ↔ dom 𝑓◡ E 𝑦) |
25 | 21, 17 | brcnv 5780 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑓◡ E 𝑦 ↔ 𝑦 E dom 𝑓) |
26 | 21 | epeli 5488 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 E dom 𝑓 ↔ 𝑦 ∈ dom 𝑓) |
27 | 25, 26 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢ (dom
𝑓◡ E 𝑦 ↔ 𝑦 ∈ dom 𝑓) |
28 | 18, 24, 27 | 3bitri 296 |
. . . . . . . . . . . . . 14
⊢ (𝑓(◡ E ∘ Domain)𝑦 ↔ 𝑦 ∈ dom 𝑓) |
29 | | df-br 5071 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fix
(◡Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ 〈𝑓, 𝑦〉 ∈ Fix
(◡Apply ∘ (FullFun𝐹 ∘
Restrict))) |
30 | | opex 5373 |
. . . . . . . . . . . . . . . . 17
⊢
〈𝑓, 𝑦〉 ∈ V |
31 | 30 | elfix 34132 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑓, 𝑦〉 ∈ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)) ↔ 〈𝑓,
𝑦〉(◡Apply ∘ (FullFun𝐹 ∘ Restrict))〈𝑓, 𝑦〉) |
32 | 30, 30 | brco 5768 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑓, 𝑦〉(◡Apply ∘ (FullFun𝐹 ∘ Restrict))〈𝑓, 𝑦〉 ↔ ∃𝑥(〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ∧ 𝑥◡Apply〈𝑓, 𝑦〉)) |
33 | | ancom 460 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ∧ 𝑥◡Apply〈𝑓, 𝑦〉) ↔ (𝑥◡Apply〈𝑓, 𝑦〉 ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥)) |
34 | 5, 30 | brcnv 5780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥◡Apply〈𝑓, 𝑦〉 ↔ 〈𝑓, 𝑦〉Apply𝑥) |
35 | 3, 17, 5 | brapply 34167 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑓, 𝑦〉Apply𝑥 ↔ 𝑥 = (𝑓‘𝑦)) |
36 | 34, 35 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥◡Apply〈𝑓, 𝑦〉 ↔ 𝑥 = (𝑓‘𝑦)) |
37 | 36 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥◡Apply〈𝑓, 𝑦〉 ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥) ↔ (𝑥 = (𝑓‘𝑦) ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥)) |
38 | 33, 37 | bitri 274 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ∧ 𝑥◡Apply〈𝑓, 𝑦〉) ↔ (𝑥 = (𝑓‘𝑦) ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥)) |
39 | 38 | exbii 1851 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥(〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ∧ 𝑥◡Apply〈𝑓, 𝑦〉) ↔ ∃𝑥(𝑥 = (𝑓‘𝑦) ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥)) |
40 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑦) ∈ V |
41 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓‘𝑦) → (〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ↔ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)(𝑓‘𝑦))) |
42 | 40, 41 | ceqsexv 3469 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥(𝑥 = (𝑓‘𝑦) ∧ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥) ↔ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)(𝑓‘𝑦)) |
43 | 39, 42 | bitri 274 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥(〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)𝑥 ∧ 𝑥◡Apply〈𝑓, 𝑦〉) ↔ 〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)(𝑓‘𝑦)) |
44 | 30, 40 | brco 5768 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)(𝑓‘𝑦) ↔ ∃𝑥(〈𝑓, 𝑦〉Restrict𝑥 ∧ 𝑥FullFun𝐹(𝑓‘𝑦))) |
45 | 3, 17, 5 | brrestrict 34178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑓, 𝑦〉Restrict𝑥 ↔ 𝑥 = (𝑓 ↾ 𝑦)) |
46 | 45 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑓, 𝑦〉Restrict𝑥 ∧ 𝑥FullFun𝐹(𝑓‘𝑦)) ↔ (𝑥 = (𝑓 ↾ 𝑦) ∧ 𝑥FullFun𝐹(𝑓‘𝑦))) |
47 | 46 | exbii 1851 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑥(〈𝑓, 𝑦〉Restrict𝑥 ∧ 𝑥FullFun𝐹(𝑓‘𝑦)) ↔ ∃𝑥(𝑥 = (𝑓 ↾ 𝑦) ∧ 𝑥FullFun𝐹(𝑓‘𝑦))) |
48 | 3 | resex 5928 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ↾ 𝑦) ∈ V |
49 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑓 ↾ 𝑦) → (𝑥FullFun𝐹(𝑓‘𝑦) ↔ (𝑓 ↾ 𝑦)FullFun𝐹(𝑓‘𝑦))) |
50 | 48, 49 | ceqsexv 3469 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑥(𝑥 = (𝑓 ↾ 𝑦) ∧ 𝑥FullFun𝐹(𝑓‘𝑦)) ↔ (𝑓 ↾ 𝑦)FullFun𝐹(𝑓‘𝑦)) |
51 | 47, 50 | bitri 274 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥(〈𝑓, 𝑦〉Restrict𝑥 ∧ 𝑥FullFun𝐹(𝑓‘𝑦)) ↔ (𝑓 ↾ 𝑦)FullFun𝐹(𝑓‘𝑦)) |
52 | 48, 40 | brfullfun 34177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ↾ 𝑦)FullFun𝐹(𝑓‘𝑦) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
53 | 44, 51, 52 | 3bitri 296 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑓, 𝑦〉(FullFun𝐹 ∘ Restrict)(𝑓‘𝑦) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
54 | 32, 43, 53 | 3bitri 296 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑓, 𝑦〉(◡Apply ∘ (FullFun𝐹 ∘ Restrict))〈𝑓, 𝑦〉 ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
55 | 29, 31, 54 | 3bitri 296 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fix
(◡Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
56 | 55 | notbii 319 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑓 Fix
(◡Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
57 | 28, 56 | anbi12i 626 |
. . . . . . . . . . . . 13
⊢ ((𝑓(◡ E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
58 | 16, 57 | bitri 274 |
. . . . . . . . . . . 12
⊢ (𝑓((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
59 | 58 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃𝑦 𝑓((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))𝑦 ↔
∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
60 | 15, 59 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict))) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
61 | | df-rex 3069 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ dom
𝑓 ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
62 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ dom
𝑓 ¬ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ¬ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
63 | 60, 61, 62 | 3bitr2ri 299 |
. . . . . . . . 9
⊢ (¬
∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ 𝑓 ∈ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) |
64 | 63 | con1bii 356 |
. . . . . . . 8
⊢ (¬
𝑓 ∈ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) |
65 | 14, 64 | anbi12i 626 |
. . . . . . 7
⊢ ((𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ∧ ¬ 𝑓 ∈
dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) ↔ ((Fun 𝑓
∧ dom 𝑓 ∈ On)
∧ ∀𝑦 ∈ dom
𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
66 | | anass 468 |
. . . . . . 7
⊢ (((Fun
𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
67 | 65, 66 | bitri 274 |
. . . . . 6
⊢ ((𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ∧ ¬ 𝑓 ∈
dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) ↔ (Fun 𝑓
∧ (dom 𝑓 ∈ On
∧ ∀𝑦 ∈ dom
𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
68 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On)) |
69 | | raleq 3333 |
. . . . . . . . 9
⊢ (𝑥 = dom 𝑓 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
70 | 68, 69 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
71 | 70 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))))) |
72 | 21, 71 | ceqsexv 3469 |
. . . . . 6
⊢
(∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
73 | | df-fn 6421 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥)) |
74 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ (dom
𝑓 = 𝑥 ↔ 𝑥 = dom 𝑓) |
75 | 74 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ dom 𝑓 = 𝑥) ↔ (Fun 𝑓 ∧ 𝑥 = dom 𝑓)) |
76 | | ancom 460 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ 𝑥 = dom 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓)) |
77 | 73, 75, 76 | 3bitri 296 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓)) |
78 | 77 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
79 | | an12 641 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
80 | | anass 468 |
. . . . . . . 8
⊢ (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))))) |
81 | 78, 79, 80 | 3bitr3ri 301 |
. . . . . . 7
⊢ ((𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
82 | 81 | exbii 1851 |
. . . . . 6
⊢
(∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
83 | 67, 72, 82 | 3bitr2i 298 |
. . . . 5
⊢ ((𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ∧ ¬ 𝑓 ∈
dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
84 | | eldif 3893 |
. . . . 5
⊢ (𝑓 ∈ ((
Funs ∩ (◡Domain “
On)) ∖ dom ((◡ E ∘ Domain)
∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (𝑓 ∈ (
Funs ∩ (◡Domain “
On)) ∧ ¬ 𝑓 ∈
dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict))))) |
85 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
86 | 83, 84, 85 | 3bitr4i 302 |
. . . 4
⊢ (𝑓 ∈ ((
Funs ∩ (◡Domain “
On)) ∖ dom ((◡ E ∘ Domain)
∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
87 | 86 | abbi2i 2878 |
. . 3
⊢ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) = {𝑓 ∣
∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
88 | 87 | unieqi 4849 |
. 2
⊢ ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
89 | 1, 88 | eqtr4i 2769 |
1
⊢
recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply
∘ (FullFun𝐹 ∘
Restrict)))) |