| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rnmpt0f 6263 sbcoteq1a 8076 fnwelem 8156 mpocurryd 8294 compssiso 10414 divfl0 13864 cjreb 15162 cnpart 15279 bitsuz 16511 acsfn 17702 eqg0el 19201 ghmeqker 19261 odmulg 19574 psrbaglefi 21946 cnrest2 23294 hausdiag 23653 prdsbl 24504 mcubic 26890 2lgslem1a2 27434 fmptco1f1o 32643 qsidomlem2 33481 areacirclem4 37718 lmclim2 37765 cmtbr2N 39254 expdiophlem1 43033 cantnfresb 43337 rrx2linest 48663 |
| Copyright terms: Public domain | W3C validator |