MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 306
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 280 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  rnmpt0f  6263  sbcoteq1a  8076  fnwelem  8156  mpocurryd  8294  compssiso  10414  divfl0  13864  cjreb  15162  cnpart  15279  bitsuz  16511  acsfn  17702  eqg0el  19201  ghmeqker  19261  odmulg  19574  psrbaglefi  21946  cnrest2  23294  hausdiag  23653  prdsbl  24504  mcubic  26890  2lgslem1a2  27434  fmptco1f1o  32643  qsidomlem2  33481  areacirclem4  37718  lmclim2  37765  cmtbr2N  39254  expdiophlem1  43033  cantnfresb  43337  rrx2linest  48663
  Copyright terms: Public domain W3C validator