MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 306
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 280 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  rnmpt0f  6161  fnwelem  8003  mpocurryd  8116  compssiso  10180  divfl0  13594  cjreb  14883  cnpart  15000  bitsuz  16230  acsfn  17417  ghmeqker  18910  odmulg  19212  psrbaglefi  21184  psrbaglefiOLD  21185  cnrest2  22486  hausdiag  22845  prdsbl  23696  mcubic  26046  2lgslem1a2  26587  fmptco1f1o  31017  eqg0el  31606  qsidomlem2  31678  sbcoteq1a  33736  areacirclem4  35916  lmclim2  35964  cmtbr2N  37467  expdiophlem1  41039  rrx2linest  46332
  Copyright terms: Public domain W3C validator