MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 305
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 279 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 280 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  rnmpt0f  6181  fnwelem  8039  mpocurryd  8155  compssiso  10231  divfl0  13645  cjreb  14933  cnpart  15050  bitsuz  16280  acsfn  17465  ghmeqker  18957  odmulg  19259  psrbaglefi  21241  psrbaglefiOLD  21242  cnrest2  22543  hausdiag  22902  prdsbl  23753  mcubic  26103  2lgslem1a2  26644  fmptco1f1o  31255  eqg0el  31853  qsidomlem2  31926  sbcoteq1a  33977  areacirclem4  35973  lmclim2  36021  cmtbr2N  37520  expdiophlem1  41106  rrx2linest  46439
  Copyright terms: Public domain W3C validator