![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
4 | 2, 3 | bitr2d 279 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
5 | 1, 4 | bitr3d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rnmpt0f 6242 sbcoteq1a 8036 fnwelem 8116 mpocurryd 8253 compssiso 10368 divfl0 13788 cjreb 15069 cnpart 15186 bitsuz 16414 acsfn 17602 ghmeqker 19118 odmulg 19423 psrbaglefi 21484 psrbaglefiOLD 21485 cnrest2 22789 hausdiag 23148 prdsbl 23999 mcubic 26349 2lgslem1a2 26890 fmptco1f1o 31852 eqg0el 32468 qsidomlem2 32567 areacirclem4 36574 lmclim2 36621 cmtbr2N 38118 expdiophlem1 41750 cantnfresb 42064 rrx2linest 47418 |
Copyright terms: Public domain | W3C validator |