Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
4 | 2, 3 | bitr2d 279 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
5 | 1, 4 | bitr3d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rnmpt0f 6181 fnwelem 8039 mpocurryd 8155 compssiso 10231 divfl0 13645 cjreb 14933 cnpart 15050 bitsuz 16280 acsfn 17465 ghmeqker 18957 odmulg 19259 psrbaglefi 21241 psrbaglefiOLD 21242 cnrest2 22543 hausdiag 22902 prdsbl 23753 mcubic 26103 2lgslem1a2 26644 fmptco1f1o 31255 eqg0el 31853 qsidomlem2 31926 sbcoteq1a 33977 areacirclem4 35973 lmclim2 36021 cmtbr2N 37520 expdiophlem1 41106 rrx2linest 46439 |
Copyright terms: Public domain | W3C validator |