Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rnmpt0f 6161 fnwelem 8003 mpocurryd 8116 compssiso 10180 divfl0 13594 cjreb 14883 cnpart 15000 bitsuz 16230 acsfn 17417 ghmeqker 18910 odmulg 19212 psrbaglefi 21184 psrbaglefiOLD 21185 cnrest2 22486 hausdiag 22845 prdsbl 23696 mcubic 26046 2lgslem1a2 26587 fmptco1f1o 31017 eqg0el 31606 qsidomlem2 31678 sbcoteq1a 33736 areacirclem4 35916 lmclim2 35964 cmtbr2N 37467 expdiophlem1 41039 rrx2linest 46332 |
Copyright terms: Public domain | W3C validator |