MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 306
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 280 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  rnmpt0f  6232  sbcoteq1a  8050  fnwelem  8130  mpocurryd  8268  compssiso  10388  divfl0  13841  cjreb  15142  cnpart  15259  bitsuz  16493  acsfn  17671  eqg0el  19166  ghmeqker  19226  odmulg  19537  psrbaglefi  21886  cnrest2  23224  hausdiag  23583  prdsbl  24430  mcubic  26809  2lgslem1a2  27353  fmptco1f1o  32611  qsidomlem2  33468  areacirclem4  37735  lmclim2  37782  cmtbr2N  39271  expdiophlem1  43045  cantnfresb  43348  rrx2linest  48722
  Copyright terms: Public domain W3C validator