MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 306
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 280 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  rnmpt0f  6219  sbcoteq1a  8033  fnwelem  8113  mpocurryd  8251  compssiso  10334  divfl0  13793  cjreb  15096  cnpart  15213  bitsuz  16451  acsfn  17627  eqg0el  19122  ghmeqker  19182  odmulg  19493  psrbaglefi  21842  cnrest2  23180  hausdiag  23539  prdsbl  24386  mcubic  26764  2lgslem1a2  27308  fmptco1f1o  32564  qsidomlem2  33431  areacirclem4  37712  lmclim2  37759  cmtbr2N  39253  expdiophlem1  43017  cantnfresb  43320  rrx2linest  48735
  Copyright terms: Public domain W3C validator