MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 305
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 279 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 280 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  rnmpt0f  6143  fnwelem  7956  mpocurryd  8069  compssiso  10114  divfl0  13525  cjreb  14815  cnpart  14932  bitsuz  16162  acsfn  17349  ghmeqker  18842  odmulg  19144  psrbaglefi  21116  psrbaglefiOLD  21117  cnrest2  22418  hausdiag  22777  prdsbl  23628  mcubic  25978  2lgslem1a2  26519  fmptco1f1o  30947  eqg0el  31536  qsidomlem2  31608  sbcoteq1a  33666  areacirclem4  35847  lmclim2  35895  cmtbr2N  37246  expdiophlem1  40823  rrx2linest  46040
  Copyright terms: Public domain W3C validator