| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rnmpt0f 6204 sbcoteq1a 8009 fnwelem 8087 mpocurryd 8225 compssiso 10303 divfl0 13762 cjreb 15065 cnpart 15182 bitsuz 16420 acsfn 17596 eqg0el 19091 ghmeqker 19151 odmulg 19462 psrbaglefi 21811 cnrest2 23149 hausdiag 23508 prdsbl 24355 mcubic 26733 2lgslem1a2 27277 fmptco1f1o 32530 qsidomlem2 33397 areacirclem4 37678 lmclim2 37725 cmtbr2N 39219 expdiophlem1 42983 cantnfresb 43286 rrx2linest 48704 |
| Copyright terms: Public domain | W3C validator |