MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitrrd Structured version   Visualization version   GIF version

Theorem 3bitrrd 297
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 271 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 272 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198
This theorem is referenced by:  fnwelem  7494  mpt2curryd  7598  compssiso  9449  divfl0  12833  cjreb  14148  cnpart  14265  bitsuz  15477  acsfn  16585  ghmeqker  17951  odmulg  18237  psrbaglefi  19646  cnrest2  21370  hausdiag  21728  prdsbl  22575  mcubic  24865  2lgslem1a2  25406  fmptco1f1o  29884  areacirclem4  33926  lmclim2  33976  cmtbr2N  35209  expdiophlem1  38265  rnmpt0  40057
  Copyright terms: Public domain W3C validator