![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: rnmpt0f 6274 sbcoteq1a 8092 fnwelem 8172 mpocurryd 8310 compssiso 10443 divfl0 13875 cjreb 15172 cnpart 15289 bitsuz 16520 acsfn 17717 eqg0el 19223 ghmeqker 19283 odmulg 19598 psrbaglefi 21969 cnrest2 23315 hausdiag 23674 prdsbl 24525 mcubic 26908 2lgslem1a2 27452 fmptco1f1o 32652 qsidomlem2 33446 areacirclem4 37671 lmclim2 37718 cmtbr2N 39209 expdiophlem1 42978 cantnfresb 43286 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |