![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rnmpt0f 6243 sbcoteq1a 8037 fnwelem 8117 mpocurryd 8254 compssiso 10369 divfl0 13789 cjreb 15070 cnpart 15187 bitsuz 16415 acsfn 17603 ghmeqker 19119 odmulg 19424 psrbaglefi 21485 psrbaglefiOLD 21486 cnrest2 22790 hausdiag 23149 prdsbl 24000 mcubic 26352 2lgslem1a2 26893 fmptco1f1o 31888 eqg0el 32504 qsidomlem2 32603 areacirclem4 36627 lmclim2 36674 cmtbr2N 38171 expdiophlem1 41808 cantnfresb 42122 rrx2linest 47476 |
Copyright terms: Public domain | W3C validator |