| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitrrd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrrd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 2 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr2d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rnmpt0f 6216 sbcoteq1a 8030 fnwelem 8110 mpocurryd 8248 compssiso 10327 divfl0 13786 cjreb 15089 cnpart 15206 bitsuz 16444 acsfn 17620 eqg0el 19115 ghmeqker 19175 odmulg 19486 psrbaglefi 21835 cnrest2 23173 hausdiag 23532 prdsbl 24379 mcubic 26757 2lgslem1a2 27301 fmptco1f1o 32557 qsidomlem2 33424 areacirclem4 37705 lmclim2 37752 cmtbr2N 39246 expdiophlem1 43010 cantnfresb 43313 rrx2linest 48731 |
| Copyright terms: Public domain | W3C validator |