![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem1a2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgslem1a 26737. (Contributed by AV, 18-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem1a2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12502 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | 1 | rehalfcld 12399 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ) |
4 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℤ) | |
5 | 2z 12534 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 2 ∈ ℤ) |
7 | 4, 6 | zmulcld 12612 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ) |
8 | 7 | zred 12606 | . . . 4 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ) |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ) |
10 | 2re 12226 | . . . . 5 ⊢ 2 ∈ ℝ | |
11 | 2pos 12255 | . . . . 5 ⊢ 0 < 2 | |
12 | 10, 11 | pm3.2i 471 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2)) |
14 | ltdiv1 12018 | . . 3 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) | |
15 | 3, 9, 13, 14 | syl3anc 1371 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) |
16 | zcn 12503 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | 16 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ) |
18 | 2cnne0 12362 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
20 | divdiv1 11865 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) | |
21 | 17, 19, 19, 20 | syl3anc 1371 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
22 | 2t2e4 12316 | . . . . 5 ⊢ (2 · 2) = 4 | |
23 | 22 | oveq2i 7367 | . . . 4 ⊢ (𝑁 / (2 · 2)) = (𝑁 / 4) |
24 | 21, 23 | eqtrdi 2792 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
25 | zcn 12503 | . . . . 5 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℂ) | |
26 | 25 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ) |
27 | 2cnd 12230 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ) | |
28 | 2ne0 12256 | . . . . 5 ⊢ 2 ≠ 0 | |
29 | 28 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0) |
30 | 26, 27, 29 | divcan4d 11936 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼) |
31 | 24, 30 | breq12d 5118 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼)) |
32 | 4re 12236 | . . . . 5 ⊢ 4 ∈ ℝ | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 4 ∈ ℝ) |
34 | 4ne0 12260 | . . . . 5 ⊢ 4 ≠ 0 | |
35 | 34 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 4 ≠ 0) |
36 | 1, 33, 35 | redivcld 11982 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
37 | fllt 13710 | . . 3 ⊢ (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) | |
38 | 36, 37 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) |
39 | 15, 31, 38 | 3bitrrd 305 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ‘cfv 6496 (class class class)co 7356 ℂcc 11048 ℝcr 11049 0cc0 11050 · cmul 11055 < clt 11188 / cdiv 11811 2c2 12207 4c4 12209 ℤcz 12498 ⌊cfl 13694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-cnex 11106 ax-resscn 11107 ax-1cn 11108 ax-icn 11109 ax-addcl 11110 ax-addrcl 11111 ax-mulcl 11112 ax-mulrcl 11113 ax-mulcom 11114 ax-addass 11115 ax-mulass 11116 ax-distr 11117 ax-i2m1 11118 ax-1ne0 11119 ax-1rid 11120 ax-rnegex 11121 ax-rrecex 11122 ax-cnre 11123 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 ax-pre-mulgt0 11127 ax-pre-sup 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-om 7802 df-2nd 7921 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-er 8647 df-en 8883 df-dom 8884 df-sdom 8885 df-sup 9377 df-inf 9378 df-pnf 11190 df-mnf 11191 df-xr 11192 df-ltxr 11193 df-le 11194 df-sub 11386 df-neg 11387 df-div 11812 df-nn 12153 df-2 12215 df-3 12216 df-4 12217 df-n0 12413 df-z 12499 df-uz 12763 df-fl 13696 |
This theorem is referenced by: 2lgslem1a 26737 |
Copyright terms: Public domain | W3C validator |