![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem1a2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgslem1a 27449. (Contributed by AV, 18-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem1a2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12614 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | 1 | rehalfcld 12510 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ) |
4 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℤ) | |
5 | 2z 12646 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 2 ∈ ℤ) |
7 | 4, 6 | zmulcld 12725 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ) |
8 | 7 | zred 12719 | . . . 4 ⊢ (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ) |
10 | 2re 12337 | . . . . 5 ⊢ 2 ∈ ℝ | |
11 | 2pos 12366 | . . . . 5 ⊢ 0 < 2 | |
12 | 10, 11 | pm3.2i 470 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2)) |
14 | ltdiv1 12129 | . . 3 ⊢ (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) | |
15 | 3, 9, 13, 14 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2))) |
16 | zcn 12615 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ) |
18 | 2cnne0 12473 | . . . . . 6 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
20 | divdiv1 11975 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) | |
21 | 17, 19, 19, 20 | syl3anc 1370 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
22 | 2t2e4 12427 | . . . . 5 ⊢ (2 · 2) = 4 | |
23 | 22 | oveq2i 7441 | . . . 4 ⊢ (𝑁 / (2 · 2)) = (𝑁 / 4) |
24 | 21, 23 | eqtrdi 2790 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
25 | zcn 12615 | . . . . 5 ⊢ (𝐼 ∈ ℤ → 𝐼 ∈ ℂ) | |
26 | 25 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ) |
27 | 2cnd 12341 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ) | |
28 | 2ne0 12367 | . . . . 5 ⊢ 2 ≠ 0 | |
29 | 28 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0) |
30 | 26, 27, 29 | divcan4d 12046 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼) |
31 | 24, 30 | breq12d 5160 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼)) |
32 | 4re 12347 | . . . . 5 ⊢ 4 ∈ ℝ | |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 4 ∈ ℝ) |
34 | 4ne0 12371 | . . . . 5 ⊢ 4 ≠ 0 | |
35 | 34 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℤ → 4 ≠ 0) |
36 | 1, 33, 35 | redivcld 12092 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
37 | fllt 13842 | . . 3 ⊢ (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) | |
38 | 36, 37 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼)) |
39 | 15, 31, 38 | 3bitrrd 306 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 · cmul 11157 < clt 11292 / cdiv 11917 2c2 12318 4c4 12320 ℤcz 12610 ⌊cfl 13826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-n0 12524 df-z 12611 df-uz 12876 df-fl 13828 |
This theorem is referenced by: 2lgslem1a 27449 |
Copyright terms: Public domain | W3C validator |