MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a2 Structured version   Visualization version   GIF version

Theorem 2lgslem1a2 25968
Description: Lemma 2 for 2lgslem1a 25969. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))

Proof of Theorem 2lgslem1a2
StepHypRef Expression
1 zre 11988 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21rehalfcld 11887 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ)
32adantr 483 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ)
4 id 22 . . . . . 6 (𝐼 ∈ ℤ → 𝐼 ∈ ℤ)
5 2z 12017 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝐼 ∈ ℤ → 2 ∈ ℤ)
74, 6zmulcld 12096 . . . . 5 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ)
87zred 12090 . . . 4 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ)
98adantl 484 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ)
10 2re 11714 . . . . 5 2 ∈ ℝ
11 2pos 11743 . . . . 5 0 < 2
1210, 11pm3.2i 473 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1312a1i 11 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
14 ltdiv1 11506 . . 3 (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
153, 9, 13, 14syl3anc 1367 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
16 zcn 11989 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716adantr 483 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ)
18 2cnne0 11850 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1918a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
20 divdiv1 11353 . . . . 5 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2117, 19, 19, 20syl3anc 1367 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
22 2t2e4 11804 . . . . 5 (2 · 2) = 4
2322oveq2i 7169 . . . 4 (𝑁 / (2 · 2)) = (𝑁 / 4)
2421, 23syl6eq 2874 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4))
25 zcn 11989 . . . . 5 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
2625adantl 484 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ)
27 2cnd 11718 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11744 . . . . 5 2 ≠ 0
2928a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan4d 11424 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼)
3124, 30breq12d 5081 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼))
32 4re 11724 . . . . 5 4 ∈ ℝ
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℝ)
34 4ne0 11748 . . . . 5 4 ≠ 0
3534a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ≠ 0)
361, 33, 35redivcld 11470 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
37 fllt 13179 . . 3 (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3836, 37sylan 582 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3915, 31, 383bitrrd 308 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   · cmul 10544   < clt 10677   / cdiv 11299  2c2 11695  4c4 11697  cz 11984  cfl 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-fl 13165
This theorem is referenced by:  2lgslem1a  25969
  Copyright terms: Public domain W3C validator