MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a2 Structured version   Visualization version   GIF version

Theorem 2lgslem1a2 25529
Description: Lemma 2 for 2lgslem1a 25530. (Contributed by AV, 18-Jun-2021.)
Assertion
Ref Expression
2lgslem1a2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))

Proof of Theorem 2lgslem1a2
StepHypRef Expression
1 zre 11709 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
21rehalfcld 11606 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℝ)
32adantr 474 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 / 2) ∈ ℝ)
4 id 22 . . . . . 6 (𝐼 ∈ ℤ → 𝐼 ∈ ℤ)
5 2z 11738 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝐼 ∈ ℤ → 2 ∈ ℤ)
74, 6zmulcld 11817 . . . . 5 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℤ)
87zred 11811 . . . 4 (𝐼 ∈ ℤ → (𝐼 · 2) ∈ ℝ)
98adantl 475 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 · 2) ∈ ℝ)
10 2re 11426 . . . . 5 2 ∈ ℝ
11 2pos 11462 . . . . 5 0 < 2
1210, 11pm3.2i 464 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
1312a1i 11 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
14 ltdiv1 11218 . . 3 (((𝑁 / 2) ∈ ℝ ∧ (𝐼 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
153, 9, 13, 14syl3anc 1496 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) < (𝐼 · 2) ↔ ((𝑁 / 2) / 2) < ((𝐼 · 2) / 2)))
16 zcn 11710 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716adantr 474 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℂ)
18 2cnne0 11569 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
1918a1i 11 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (2 ∈ ℂ ∧ 2 ≠ 0))
20 divdiv1 11063 . . . . 5 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2117, 19, 19, 20syl3anc 1496 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
22 2t2e4 11523 . . . . 5 (2 · 2) = 4
2322oveq2i 6917 . . . 4 (𝑁 / (2 · 2)) = (𝑁 / 4)
2421, 23syl6eq 2878 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 2) / 2) = (𝑁 / 4))
25 zcn 11710 . . . . 5 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
2625adantl 475 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℂ)
27 2cnd 11430 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11463 . . . . 5 2 ≠ 0
2928a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan4d 11134 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝐼 · 2) / 2) = 𝐼)
3124, 30breq12d 4887 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (((𝑁 / 2) / 2) < ((𝐼 · 2) / 2) ↔ (𝑁 / 4) < 𝐼))
32 4re 11437 . . . . 5 4 ∈ ℝ
3332a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℝ)
34 4ne0 11467 . . . . 5 4 ≠ 0
3534a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ≠ 0)
361, 33, 35redivcld 11180 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
37 fllt 12903 . . 3 (((𝑁 / 4) ∈ ℝ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3836, 37sylan 577 . 2 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((𝑁 / 4) < 𝐼 ↔ (⌊‘(𝑁 / 4)) < 𝐼))
3915, 31, 383bitrrd 298 1 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000   class class class wbr 4874  cfv 6124  (class class class)co 6906  cc 10251  cr 10252  0cc0 10253   · cmul 10258   < clt 10392   / cdiv 11010  2c2 11407  4c4 11409  cz 11705  cfl 12887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-n0 11620  df-z 11706  df-uz 11970  df-fl 12889
This theorem is referenced by:  2lgslem1a  25530
  Copyright terms: Public domain W3C validator