Proof of Theorem cmtbr2N
Step | Hyp | Ref
| Expression |
1 | | cmtbr2.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cmtbr2.o |
. . 3
⊢ ⊥ =
(oc‘𝐾) |
3 | | cmtbr2.c |
. . 3
⊢ 𝐶 = (cm‘𝐾) |
4 | 1, 2, 3 | cmt4N 37003 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) |
5 | | simp1 1138 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) |
6 | | omlop 36992 |
. . . . 5
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
7 | 6 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
8 | | simp2 1139 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
9 | 1, 2 | opoccl 36945 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
10 | 7, 8, 9 | syl2anc 587 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
11 | | simp3 1140 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
12 | 1, 2 | opoccl 36945 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
13 | 7, 11, 12 | syl2anc 587 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
14 | | cmtbr2.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
15 | | cmtbr2.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
16 | 1, 14, 15, 2, 3 | cmtvalN 36962 |
. . 3
⊢ ((𝐾 ∈ OML ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
17 | 5, 10, 13, 16 | syl3anc 1373 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌) ↔ ( ⊥ ‘𝑋) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
18 | | eqcom 2744 |
. . . 4
⊢ (𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) ↔ ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) = 𝑋) |
19 | 18 | a1i 11 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) ↔ ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) = 𝑋)) |
20 | | omllat 36993 |
. . . . . 6
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
21 | 20 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
22 | 1, 14 | latjcl 17945 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
23 | 20, 22 | syl3an1 1165 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
24 | 1, 14 | latjcl 17945 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑌)) ∈ 𝐵) |
25 | 21, 8, 13, 24 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑌)) ∈ 𝐵) |
26 | 1, 15 | latmcl 17946 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∨ ( ⊥ ‘𝑌)) ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) ∈ 𝐵) |
27 | 21, 23, 25, 26 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) ∈ 𝐵) |
28 | 1, 2 | opcon3b 36947 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) = 𝑋 ↔ ( ⊥ ‘𝑋) = ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))))) |
29 | 7, 27, 8, 28 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))) = 𝑋 ↔ ( ⊥ ‘𝑋) = ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))))) |
30 | | omlol 36991 |
. . . . . . 7
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
31 | 30 | 3ad2ant1 1135 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OL) |
32 | 1, 14, 15, 2 | oldmm1 36968 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∨ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∨ 𝑌)) ∨ ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌))))) |
33 | 31, 23, 25, 32 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∨ 𝑌)) ∨ ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌))))) |
34 | 1, 14, 15, 2 | oldmj1 36972 |
. . . . . . 7
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
35 | 30, 34 | syl3an1 1165 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
36 | 1, 14, 15, 2 | oldmj1 36972 |
. . . . . . 7
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))) |
37 | 31, 8, 13, 36 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))) |
38 | 35, 37 | oveq12d 7231 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∨ 𝑌)) ∨ ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌)))) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌))))) |
39 | 33, 38 | eqtrd 2777 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌))))) |
40 | 39 | eqeq2d 2748 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = ( ⊥ ‘((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌)))) ↔ ( ⊥ ‘𝑋) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
41 | 19, 29, 40 | 3bitrrd 309 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = ((( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))) ↔ 𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))))) |
42 | 4, 17, 41 | 3bitrd 308 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))))) |