Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr2N Structured version   Visualization version   GIF version

Theorem cmtbr2N 39300
Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 31576 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtbr2N
StepHypRef Expression
1 cmtbr2.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr2.o . . 3 = (oc‘𝐾)
3 cmtbr2.c . . 3 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 39299 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶( 𝑌)))
5 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
6 omlop 39288 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
8 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
91, 2opoccl 39241 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
11 simp3 1138 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
121, 2opoccl 39241 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
137, 11, 12syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
14 cmtbr2.j . . . 4 = (join‘𝐾)
15 cmtbr2.m . . . 4 = (meet‘𝐾)
161, 14, 15, 2, 3cmtvalN 39258 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
175, 10, 13, 16syl3anc 1373 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
18 eqcom 2738 . . . 4 (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋)
1918a1i 11 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋))
20 omllat 39289 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
21203ad2ant1 1133 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
221, 14latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2320, 22syl3an1 1163 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
241, 14latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
2521, 8, 13, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
261, 15latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
281, 2opcon3b 39243 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
297, 27, 8, 28syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
30 omlol 39287 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OL)
31303ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
321, 14, 15, 2oldmm1 39264 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
3331, 23, 25, 32syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
341, 14, 15, 2oldmj1 39268 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
3530, 34syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
361, 14, 15, 2oldmj1 39268 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3731, 8, 13, 36syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3835, 37oveq12d 7364 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
3933, 38eqtrd 2766 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
4039eqeq2d 2742 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
4119, 29, 403bitrrd 306 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
424, 17, 413bitrd 305 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  occoc 17169  joincjn 18217  meetcmee 18218  Latclat 18337  OPcops 39219  cmccmtN 39220  OLcol 39221  OMLcoml 39222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-oposet 39223  df-cmtN 39224  df-ol 39225  df-oml 39226
This theorem is referenced by:  cmtbr3N  39301
  Copyright terms: Public domain W3C validator