Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr2N Structured version   Visualization version   GIF version

Theorem cmtbr2N 39219
Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 31498 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtbr2N
StepHypRef Expression
1 cmtbr2.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr2.o . . 3 = (oc‘𝐾)
3 cmtbr2.c . . 3 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 39218 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶( 𝑌)))
5 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
6 omlop 39207 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
8 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
91, 2opoccl 39160 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
11 simp3 1138 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
121, 2opoccl 39160 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
137, 11, 12syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
14 cmtbr2.j . . . 4 = (join‘𝐾)
15 cmtbr2.m . . . 4 = (meet‘𝐾)
161, 14, 15, 2, 3cmtvalN 39177 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
175, 10, 13, 16syl3anc 1373 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
18 eqcom 2736 . . . 4 (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋)
1918a1i 11 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋))
20 omllat 39208 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
21203ad2ant1 1133 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
221, 14latjcl 18374 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2320, 22syl3an1 1163 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
241, 14latjcl 18374 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
2521, 8, 13, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
261, 15latmcl 18375 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
281, 2opcon3b 39162 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
297, 27, 8, 28syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
30 omlol 39206 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OL)
31303ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
321, 14, 15, 2oldmm1 39183 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
3331, 23, 25, 32syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
341, 14, 15, 2oldmj1 39187 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
3530, 34syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
361, 14, 15, 2oldmj1 39187 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3731, 8, 13, 36syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3835, 37oveq12d 7387 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
3933, 38eqtrd 2764 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
4039eqeq2d 2740 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
4119, 29, 403bitrrd 306 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
424, 17, 413bitrd 305 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  occoc 17204  joincjn 18248  meetcmee 18249  Latclat 18366  OPcops 39138  cmccmtN 39139  OLcol 39140  OMLcoml 39141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-lat 18367  df-oposet 39142  df-cmtN 39143  df-ol 39144  df-oml 39145
This theorem is referenced by:  cmtbr3N  39220
  Copyright terms: Public domain W3C validator