Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr2N Structured version   Visualization version   GIF version

Theorem cmtbr2N 39246
Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 31525 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtbr2N
StepHypRef Expression
1 cmtbr2.b . . 3 𝐵 = (Base‘𝐾)
2 cmtbr2.o . . 3 = (oc‘𝐾)
3 cmtbr2.c . . 3 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 39245 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑋)𝐶( 𝑌)))
5 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
6 omlop 39234 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
8 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
91, 2opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
11 simp3 1138 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
121, 2opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
137, 11, 12syl2anc 584 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
14 cmtbr2.j . . . 4 = (join‘𝐾)
15 cmtbr2.m . . . 4 = (meet‘𝐾)
161, 14, 15, 2, 3cmtvalN 39204 . . 3 ((𝐾 ∈ OML ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
175, 10, 13, 16syl3anc 1373 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋)𝐶( 𝑌) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
18 eqcom 2736 . . . 4 (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋)
1918a1i 11 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))) ↔ ((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋))
20 omllat 39235 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
21203ad2ant1 1133 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
221, 14latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2320, 22syl3an1 1163 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
241, 14latjcl 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
2521, 8, 13, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
261, 15latmcl 18399 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵)
281, 2opcon3b 39189 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑌) (𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
297, 27, 8, 28syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) (𝑋 ( 𝑌))) = 𝑋 ↔ ( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌))))))
30 omlol 39233 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OL)
31303ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
321, 14, 15, 2oldmm1 39210 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
3331, 23, 25, 32syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))))
341, 14, 15, 2oldmj1 39214 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
3530, 34syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
361, 14, 15, 2oldmj1 39214 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3731, 8, 13, 36syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) ( ‘( 𝑌))))
3835, 37oveq12d 7405 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 𝑌)) ( ‘(𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
3933, 38eqtrd 2764 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))))
4039eqeq2d 2740 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ( ‘((𝑋 𝑌) (𝑋 ( 𝑌)))) ↔ ( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌))))))
4119, 29, 403bitrrd 306 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ((( 𝑋) ( 𝑌)) (( 𝑋) ( ‘( 𝑌)))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
424, 17, 413bitrd 305 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  occoc 17228  joincjn 18272  meetcmee 18273  Latclat 18390  OPcops 39165  cmccmtN 39166  OLcol 39167  OMLcoml 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391  df-oposet 39169  df-cmtN 39170  df-ol 39171  df-oml 39172
This theorem is referenced by:  cmtbr3N  39247
  Copyright terms: Public domain W3C validator