MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divfl0 Structured version   Visualization version   GIF version

Theorem divfl0 13007
Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
divfl0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))

Proof of Theorem divfl0
StepHypRef Expression
1 nn0nndivcl 11776 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
21recnd 10466 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℂ)
3 addid2 10621 . . . . 5 ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵))
43eqcomd 2777 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → (𝐴 / 𝐵) = (0 + (𝐴 / 𝐵)))
52, 4syl 17 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) = (0 + (𝐴 / 𝐵)))
65fveqeq2d 6504 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((⌊‘(𝐴 / 𝐵)) = 0 ↔ (⌊‘(0 + (𝐴 / 𝐵))) = 0))
7 0z 11802 . . 3 0 ∈ ℤ
8 flbi2 13000 . . 3 ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℝ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
97, 1, 8sylancr 579 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
10 nn0ge0div 11862 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 ≤ (𝐴 / 𝐵))
1110biantrurd 525 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) < 1 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
12 nn0re 11715 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
13 nnrp 12215 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
14 divlt1lt 12273 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
1512, 13, 14syl2an 587 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
1611, 15bitr3d 273 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1) ↔ 𝐴 < 𝐵))
176, 9, 163bitrrd 298 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051   class class class wbr 4925  cfv 6185  (class class class)co 6974  cc 10331  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   < clt 10472  cle 10473   / cdiv 11096  cn 11437  0cn0 11705  cz 11791  +crp 12202  cfl 12973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-sup 8699  df-inf 8700  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-fl 12975
This theorem is referenced by:  fldiv4p1lem1div2  13018  fldiv4lem1div2  13020  gausslemma2dlem4  25662
  Copyright terms: Public domain W3C validator