![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjreb | Structured version Visualization version GIF version |
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjreb | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 15041 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 11226 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 11153 | . . . . . 6 ⊢ i ∈ ℂ | |
4 | imcl 15042 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 11226 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 11178 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | negsubd 11561 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
9 | mulneg2 11635 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
10 | 3, 5, 9 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
11 | 10 | oveq2d 7410 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
12 | remim 15048 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
13 | 8, 11, 12 | 3eqtr4rd 2783 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
14 | replim 15047 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
15 | 13, 14 | eqeq12d 2748 | . 2 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) = 𝐴 ↔ ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
16 | 5 | negcld 11542 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ) |
17 | mulcl 11178 | . . . 4 ⊢ ((i ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) ∈ ℂ) | |
18 | 3, 16, 17 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) ∈ ℂ) |
19 | 2, 18, 7 | addcand 11401 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)))) |
20 | eqcom 2739 | . . . 4 ⊢ (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = -(ℑ‘𝐴)) | |
21 | 5 | eqnegd 11919 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0)) |
22 | 20, 21 | bitrid 282 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0)) |
23 | ine0 11633 | . . . . . 6 ⊢ i ≠ 0 | |
24 | 3, 23 | pm3.2i 471 | . . . . 5 ⊢ (i ∈ ℂ ∧ i ≠ 0) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i ∈ ℂ ∧ i ≠ 0)) |
26 | mulcan 11835 | . . . 4 ⊢ ((-(ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴))) | |
27 | 16, 5, 25, 26 | syl3anc 1371 | . . 3 ⊢ (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴))) |
28 | reim0b 15050 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
29 | 22, 27, 28 | 3bitr4d 310 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ 𝐴 ∈ ℝ)) |
30 | 15, 19, 29 | 3bitrrd 305 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ‘cfv 6533 (class class class)co 7394 ℂcc 11092 ℝcr 11093 0cc0 11094 ici 11096 + caddc 11097 · cmul 11099 − cmin 11428 -cneg 11429 ∗ccj 15027 ℜcre 15028 ℑcim 15029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-2 12259 df-cj 15030 df-re 15031 df-im 15032 |
This theorem is referenced by: cjre 15070 cjmulrcl 15075 cjrebi 15105 cjrebd 15133 hire 30274 |
Copyright terms: Public domain | W3C validator |