![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjreb | Structured version Visualization version GIF version |
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjreb | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 15145 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 11286 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 11211 | . . . . . 6 ⊢ i ∈ ℂ | |
4 | imcl 15146 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 11286 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 11236 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | negsubd 11623 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) |
9 | mulneg2 11697 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
10 | 3, 5, 9 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
11 | 10 | oveq2d 7446 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
12 | remim 15152 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
13 | 8, 11, 12 | 3eqtr4rd 2785 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
14 | replim 15151 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
15 | 13, 14 | eqeq12d 2750 | . 2 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) = 𝐴 ↔ ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
16 | 5 | negcld 11604 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ) |
17 | mulcl 11236 | . . . 4 ⊢ ((i ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) ∈ ℂ) | |
18 | 3, 16, 17 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) ∈ ℂ) |
19 | 2, 18, 7 | addcand 11461 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)))) |
20 | eqcom 2741 | . . . 4 ⊢ (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = -(ℑ‘𝐴)) | |
21 | 5 | eqnegd 11985 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0)) |
22 | 20, 21 | bitrid 283 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0)) |
23 | ine0 11695 | . . . . . 6 ⊢ i ≠ 0 | |
24 | 3, 23 | pm3.2i 470 | . . . . 5 ⊢ (i ∈ ℂ ∧ i ≠ 0) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (i ∈ ℂ ∧ i ≠ 0)) |
26 | mulcan 11897 | . . . 4 ⊢ ((-(ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴))) | |
27 | 16, 5, 25, 26 | syl3anc 1370 | . . 3 ⊢ (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴))) |
28 | reim0b 15154 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
29 | 22, 27, 28 | 3bitr4d 311 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ 𝐴 ∈ ℝ)) |
30 | 15, 19, 29 | 3bitrrd 306 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 ici 11154 + caddc 11155 · cmul 11157 − cmin 11489 -cneg 11490 ∗ccj 15131 ℜcre 15132 ℑcim 15133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-cj 15134 df-re 15135 df-im 15136 |
This theorem is referenced by: cjre 15174 cjmulrcl 15179 cjrebi 15209 cjrebd 15237 hire 31122 constrrtll 33736 |
Copyright terms: Public domain | W3C validator |