MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Structured version   Visualization version   GIF version

Theorem cjreb 15054
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))

Proof of Theorem cjreb
StepHypRef Expression
1 recl 15041 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 11226 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 11153 . . . . . 6 i ∈ ℂ
4 imcl 15042 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 11226 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 11178 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negsubd 11561 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
9 mulneg2 11635 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
103, 5, 9sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1110oveq2d 7410 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
12 remim 15048 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
138, 11, 123eqtr4rd 2783 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
14 replim 15047 . . 3 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1513, 14eqeq12d 2748 . 2 (𝐴 ∈ ℂ → ((∗‘𝐴) = 𝐴 ↔ ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
165negcld 11542 . . . 4 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
17 mulcl 11178 . . . 4 ((i ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) ∈ ℂ)
183, 16, 17sylancr 587 . . 3 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) ∈ ℂ)
192, 18, 7addcand 11401 . 2 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴))))
20 eqcom 2739 . . . 4 (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = -(ℑ‘𝐴))
215eqnegd 11919 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
2220, 21bitrid 282 . . 3 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
23 ine0 11633 . . . . . 6 i ≠ 0
243, 23pm3.2i 471 . . . . 5 (i ∈ ℂ ∧ i ≠ 0)
2524a1i 11 . . . 4 (𝐴 ∈ ℂ → (i ∈ ℂ ∧ i ≠ 0))
26 mulcan 11835 . . . 4 ((-(ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
2716, 5, 25, 26syl3anc 1371 . . 3 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
28 reim0b 15050 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
2922, 27, 283bitr4d 310 . 2 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ 𝐴 ∈ ℝ))
3015, 19, 293bitrrd 305 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  cfv 6533  (class class class)co 7394  cc 11092  cr 11093  0cc0 11094  ici 11096   + caddc 11097   · cmul 11099  cmin 11428  -cneg 11429  ccj 15027  cre 15028  cim 15029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-2 12259  df-cj 15030  df-re 15031  df-im 15032
This theorem is referenced by:  cjre  15070  cjmulrcl  15075  cjrebi  15105  cjrebd  15133  hire  30274
  Copyright terms: Public domain W3C validator