MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   GIF version

Theorem bitsuz 16520
Description: The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 16519 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
21eqeq1d 2742 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴) ↔ (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴)))
3 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
43zred 12747 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
5 2nn 12366 . . . . . . . . 9 2 ∈ ℕ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 14294 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
94, 8nndivred 12347 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑𝑁)) ∈ ℝ)
109flcld 13849 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ)
118nnzd 12666 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
1210, 11zmulcld 12753 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ)
13 bitsf1 16492 . . . . 5 bits:ℤ–1-1→𝒫 ℕ0
14 f1fveq 7299 . . . . 5 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ)) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1513, 14mpan 689 . . . 4 ((((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1612, 3, 15syl2anc 583 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
17 dvdsmul2 16327 . . . . . 6 (((⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
1810, 11, 17syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
19 breq2 5170 . . . . 5 (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → ((2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ↔ (2↑𝑁) ∥ 𝐴))
2018, 19syl5ibcom 245 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → (2↑𝑁) ∥ 𝐴))
218nnne0d 12343 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
22 dvdsval2 16305 . . . . . . . . . 10 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2311, 21, 3, 22syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2423biimpa 476 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (𝐴 / (2↑𝑁)) ∈ ℤ)
25 flid 13859 . . . . . . . 8 ((𝐴 / (2↑𝑁)) ∈ ℤ → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2726oveq1d 7463 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = ((𝐴 / (2↑𝑁)) · (2↑𝑁)))
283zcnd 12748 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2928adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝐴 ∈ ℂ)
308nncnd 12309 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
3130adantr 480 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ∈ ℂ)
32 2cnd 12371 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ∈ ℂ)
33 2ne0 12397 . . . . . . . . 9 2 ≠ 0
3433a1i 11 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ≠ 0)
357nn0zd 12665 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3635adantr 480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝑁 ∈ ℤ)
3732, 34, 36expne0d 14202 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ≠ 0)
3829, 31, 37divcan1d 12071 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((𝐴 / (2↑𝑁)) · (2↑𝑁)) = 𝐴)
3927, 38eqtrd 2780 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴)
4039ex 412 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
4120, 40impbid 212 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 ↔ (2↑𝑁) ∥ 𝐴))
422, 16, 413bitrrd 306 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴)))
43 dfss2 3994 . 2 ((bits‘𝐴) ⊆ (ℤ𝑁) ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴))
4442, 43bitr4di 289 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  1-1wf1 6570  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   · cmul 11189   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cfl 13841  cexp 14112  cdvds 16302  bitscbits 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-bits 16468  df-sad 16497
This theorem is referenced by:  bitsshft  16521
  Copyright terms: Public domain W3C validator