MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   GIF version

Theorem bitsuz 16280
Description: The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 16279 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
21eqeq1d 2738 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴) ↔ (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴)))
3 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
43zred 12527 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
5 2nn 12147 . . . . . . . . 9 2 ∈ ℕ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 14061 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
94, 8nndivred 12128 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑𝑁)) ∈ ℝ)
109flcld 13619 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ)
118nnzd 12526 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
1210, 11zmulcld 12533 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ)
13 bitsf1 16252 . . . . 5 bits:ℤ–1-1→𝒫 ℕ0
14 f1fveq 7191 . . . . 5 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ)) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1513, 14mpan 687 . . . 4 ((((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1612, 3, 15syl2anc 584 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
17 dvdsmul2 16087 . . . . . 6 (((⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
1810, 11, 17syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
19 breq2 5096 . . . . 5 (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → ((2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ↔ (2↑𝑁) ∥ 𝐴))
2018, 19syl5ibcom 244 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → (2↑𝑁) ∥ 𝐴))
218nnne0d 12124 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
22 dvdsval2 16065 . . . . . . . . . 10 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2311, 21, 3, 22syl3anc 1370 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2423biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (𝐴 / (2↑𝑁)) ∈ ℤ)
25 flid 13629 . . . . . . . 8 ((𝐴 / (2↑𝑁)) ∈ ℤ → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2726oveq1d 7352 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = ((𝐴 / (2↑𝑁)) · (2↑𝑁)))
283zcnd 12528 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2928adantr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝐴 ∈ ℂ)
308nncnd 12090 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
3130adantr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ∈ ℂ)
32 2cnd 12152 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ∈ ℂ)
33 2ne0 12178 . . . . . . . . 9 2 ≠ 0
3433a1i 11 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ≠ 0)
357nn0zd 12525 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3635adantr 481 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝑁 ∈ ℤ)
3732, 34, 36expne0d 13971 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ≠ 0)
3829, 31, 37divcan1d 11853 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((𝐴 / (2↑𝑁)) · (2↑𝑁)) = 𝐴)
3927, 38eqtrd 2776 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴)
4039ex 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
4120, 40impbid 211 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 ↔ (2↑𝑁) ∥ 𝐴))
422, 16, 413bitrrd 305 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴)))
43 df-ss 3915 . 2 ((bits‘𝐴) ⊆ (ℤ𝑁) ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴))
4442, 43bitr4di 288 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  cin 3897  wss 3898  𝒫 cpw 4547   class class class wbr 5092  1-1wf1 6476  cfv 6479  (class class class)co 7337  cc 10970  0cc0 10972   · cmul 10977   / cdiv 11733  cn 12074  2c2 12129  0cn0 12334  cz 12420  cuz 12683  cfl 13611  cexp 13883  cdvds 16062  bitscbits 16225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-disj 5058  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-sum 15497  df-dvds 16063  df-bits 16228  df-sad 16257
This theorem is referenced by:  bitsshft  16281
  Copyright terms: Public domain W3C validator