MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   GIF version

Theorem bitsuz 15996
Description: The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 15995 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
21eqeq1d 2738 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴) ↔ (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴)))
3 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
43zred 12247 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
5 2nn 11868 . . . . . . . . 9 2 ∈ ℕ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 488 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 13777 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
94, 8nndivred 11849 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑𝑁)) ∈ ℝ)
109flcld 13338 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ)
118nnzd 12246 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
1210, 11zmulcld 12253 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ)
13 bitsf1 15968 . . . . 5 bits:ℤ–1-1→𝒫 ℕ0
14 f1fveq 7052 . . . . 5 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ)) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1513, 14mpan 690 . . . 4 ((((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1612, 3, 15syl2anc 587 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
17 dvdsmul2 15803 . . . . . 6 (((⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
1810, 11, 17syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
19 breq2 5043 . . . . 5 (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → ((2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ↔ (2↑𝑁) ∥ 𝐴))
2018, 19syl5ibcom 248 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → (2↑𝑁) ∥ 𝐴))
218nnne0d 11845 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
22 dvdsval2 15781 . . . . . . . . . 10 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2311, 21, 3, 22syl3anc 1373 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2423biimpa 480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (𝐴 / (2↑𝑁)) ∈ ℤ)
25 flid 13348 . . . . . . . 8 ((𝐴 / (2↑𝑁)) ∈ ℤ → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2726oveq1d 7206 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = ((𝐴 / (2↑𝑁)) · (2↑𝑁)))
283zcnd 12248 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2928adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝐴 ∈ ℂ)
308nncnd 11811 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
3130adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ∈ ℂ)
32 2cnd 11873 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ∈ ℂ)
33 2ne0 11899 . . . . . . . . 9 2 ≠ 0
3433a1i 11 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ≠ 0)
357nn0zd 12245 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3635adantr 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝑁 ∈ ℤ)
3732, 34, 36expne0d 13687 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ≠ 0)
3829, 31, 37divcan1d 11574 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((𝐴 / (2↑𝑁)) · (2↑𝑁)) = 𝐴)
3927, 38eqtrd 2771 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴)
4039ex 416 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
4120, 40impbid 215 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 ↔ (2↑𝑁) ∥ 𝐴))
422, 16, 413bitrrd 309 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴)))
43 df-ss 3870 . 2 ((bits‘𝐴) ⊆ (ℤ𝑁) ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴))
4442, 43bitr4di 292 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  cin 3852  wss 3853  𝒫 cpw 4499   class class class wbr 5039  1-1wf1 6355  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694   · cmul 10699   / cdiv 11454  cn 11795  2c2 11850  0cn0 12055  cz 12141  cuz 12403  cfl 13330  cexp 13600  cdvds 15778  bitscbits 15941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-had 1600  df-cad 1614  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-dvds 15779  df-bits 15944  df-sad 15973
This theorem is referenced by:  bitsshft  15997
  Copyright terms: Public domain W3C validator