MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   GIF version

Theorem bitsuz 15811
Description: The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 15810 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
21eqeq1d 2820 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴) ↔ (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴)))
3 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
43zred 12075 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
5 2nn 11698 . . . . . . . . 9 2 ∈ ℕ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 13594 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
94, 8nndivred 11679 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑𝑁)) ∈ ℝ)
109flcld 13156 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ)
118nnzd 12074 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
1210, 11zmulcld 12081 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ)
13 bitsf1 15783 . . . . 5 bits:ℤ–1-1→𝒫 ℕ0
14 f1fveq 7011 . . . . 5 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ)) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1513, 14mpan 686 . . . 4 ((((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1612, 3, 15syl2anc 584 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
17 dvdsmul2 15620 . . . . . 6 (((⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
1810, 11, 17syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
19 breq2 5061 . . . . 5 (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → ((2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ↔ (2↑𝑁) ∥ 𝐴))
2018, 19syl5ibcom 246 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → (2↑𝑁) ∥ 𝐴))
218nnne0d 11675 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
22 dvdsval2 15598 . . . . . . . . . 10 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2311, 21, 3, 22syl3anc 1363 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2423biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (𝐴 / (2↑𝑁)) ∈ ℤ)
25 flid 13166 . . . . . . . 8 ((𝐴 / (2↑𝑁)) ∈ ℤ → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2726oveq1d 7160 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = ((𝐴 / (2↑𝑁)) · (2↑𝑁)))
283zcnd 12076 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2928adantr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝐴 ∈ ℂ)
308nncnd 11642 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
3130adantr 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ∈ ℂ)
32 2cnd 11703 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ∈ ℂ)
33 2ne0 11729 . . . . . . . . 9 2 ≠ 0
3433a1i 11 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ≠ 0)
357nn0zd 12073 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3635adantr 481 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝑁 ∈ ℤ)
3732, 34, 36expne0d 13504 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ≠ 0)
3829, 31, 37divcan1d 11405 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((𝐴 / (2↑𝑁)) · (2↑𝑁)) = 𝐴)
3927, 38eqtrd 2853 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴)
4039ex 413 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
4120, 40impbid 213 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 ↔ (2↑𝑁) ∥ 𝐴))
422, 16, 413bitrrd 307 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴)))
43 df-ss 3949 . 2 ((bits‘𝐴) ⊆ (ℤ𝑁) ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴))
4442, 43syl6bbr 290 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  cin 3932  wss 3933  𝒫 cpw 4535   class class class wbr 5057  1-1wf1 6345  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525   · cmul 10530   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cfl 13148  cexp 13417  cdvds 15595  bitscbits 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-fal 1541  df-had 1585  df-cad 1599  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-bits 15759  df-sad 15788
This theorem is referenced by:  bitsshft  15812
  Copyright terms: Public domain W3C validator