Step | Hyp | Ref
| Expression |
1 | | bitsres 16410 |
. . . 4
β’ ((π΄ β β€ β§ π β β0)
β ((bitsβπ΄)
β© (β€β₯βπ)) = (bitsβ((ββ(π΄ / (2βπ))) Β· (2βπ)))) |
2 | 1 | eqeq1d 2734 |
. . 3
β’ ((π΄ β β€ β§ π β β0)
β (((bitsβπ΄)
β© (β€β₯βπ)) = (bitsβπ΄) β (bitsβ((ββ(π΄ / (2βπ))) Β· (2βπ))) = (bitsβπ΄))) |
3 | | simpl 483 |
. . . . . . . 8
β’ ((π΄ β β€ β§ π β β0)
β π΄ β
β€) |
4 | 3 | zred 12662 |
. . . . . . 7
β’ ((π΄ β β€ β§ π β β0)
β π΄ β
β) |
5 | | 2nn 12281 |
. . . . . . . . 9
β’ 2 β
β |
6 | 5 | a1i 11 |
. . . . . . . 8
β’ ((π΄ β β€ β§ π β β0)
β 2 β β) |
7 | | simpr 485 |
. . . . . . . 8
β’ ((π΄ β β€ β§ π β β0)
β π β
β0) |
8 | 6, 7 | nnexpcld 14204 |
. . . . . . 7
β’ ((π΄ β β€ β§ π β β0)
β (2βπ) β
β) |
9 | 4, 8 | nndivred 12262 |
. . . . . 6
β’ ((π΄ β β€ β§ π β β0)
β (π΄ / (2βπ)) β
β) |
10 | 9 | flcld 13759 |
. . . . 5
β’ ((π΄ β β€ β§ π β β0)
β (ββ(π΄ /
(2βπ))) β
β€) |
11 | 8 | nnzd 12581 |
. . . . 5
β’ ((π΄ β β€ β§ π β β0)
β (2βπ) β
β€) |
12 | 10, 11 | zmulcld 12668 |
. . . 4
β’ ((π΄ β β€ β§ π β β0)
β ((ββ(π΄ /
(2βπ))) Β·
(2βπ)) β
β€) |
13 | | bitsf1 16383 |
. . . . 5
β’
bits:β€β1-1βπ« β0 |
14 | | f1fveq 7257 |
. . . . 5
β’
((bits:β€β1-1βπ« β0 β§
(((ββ(π΄ /
(2βπ))) Β·
(2βπ)) β β€
β§ π΄ β β€))
β ((bitsβ((ββ(π΄ / (2βπ))) Β· (2βπ))) = (bitsβπ΄) β ((ββ(π΄ / (2βπ))) Β· (2βπ)) = π΄)) |
15 | 13, 14 | mpan 688 |
. . . 4
β’
((((ββ(π΄
/ (2βπ))) Β·
(2βπ)) β β€
β§ π΄ β β€)
β ((bitsβ((ββ(π΄ / (2βπ))) Β· (2βπ))) = (bitsβπ΄) β ((ββ(π΄ / (2βπ))) Β· (2βπ)) = π΄)) |
16 | 12, 3, 15 | syl2anc 584 |
. . 3
β’ ((π΄ β β€ β§ π β β0)
β ((bitsβ((ββ(π΄ / (2βπ))) Β· (2βπ))) = (bitsβπ΄) β ((ββ(π΄ / (2βπ))) Β· (2βπ)) = π΄)) |
17 | | dvdsmul2 16218 |
. . . . . 6
β’
(((ββ(π΄
/ (2βπ))) β
β€ β§ (2βπ)
β β€) β (2βπ) β₯ ((ββ(π΄ / (2βπ))) Β· (2βπ))) |
18 | 10, 11, 17 | syl2anc 584 |
. . . . 5
β’ ((π΄ β β€ β§ π β β0)
β (2βπ) β₯
((ββ(π΄ /
(2βπ))) Β·
(2βπ))) |
19 | | breq2 5151 |
. . . . 5
β’
(((ββ(π΄
/ (2βπ))) Β·
(2βπ)) = π΄ β ((2βπ) β₯ ((ββ(π΄ / (2βπ))) Β· (2βπ)) β (2βπ) β₯ π΄)) |
20 | 18, 19 | syl5ibcom 244 |
. . . 4
β’ ((π΄ β β€ β§ π β β0)
β (((ββ(π΄
/ (2βπ))) Β·
(2βπ)) = π΄ β (2βπ) β₯ π΄)) |
21 | 8 | nnne0d 12258 |
. . . . . . . . . 10
β’ ((π΄ β β€ β§ π β β0)
β (2βπ) β
0) |
22 | | dvdsval2 16196 |
. . . . . . . . . 10
β’
(((2βπ) β
β€ β§ (2βπ)
β 0 β§ π΄ β
β€) β ((2βπ)
β₯ π΄ β (π΄ / (2βπ)) β β€)) |
23 | 11, 21, 3, 22 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π΄ β β€ β§ π β β0)
β ((2βπ) β₯
π΄ β (π΄ / (2βπ)) β β€)) |
24 | 23 | biimpa 477 |
. . . . . . . 8
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β (π΄ / (2βπ)) β β€) |
25 | | flid 13769 |
. . . . . . . 8
β’ ((π΄ / (2βπ)) β β€ β
(ββ(π΄ /
(2βπ))) = (π΄ / (2βπ))) |
26 | 24, 25 | syl 17 |
. . . . . . 7
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β
(ββ(π΄ /
(2βπ))) = (π΄ / (2βπ))) |
27 | 26 | oveq1d 7420 |
. . . . . 6
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β
((ββ(π΄ /
(2βπ))) Β·
(2βπ)) = ((π΄ / (2βπ)) Β· (2βπ))) |
28 | 3 | zcnd 12663 |
. . . . . . . 8
β’ ((π΄ β β€ β§ π β β0)
β π΄ β
β) |
29 | 28 | adantr 481 |
. . . . . . 7
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β π΄ β β) |
30 | 8 | nncnd 12224 |
. . . . . . . 8
β’ ((π΄ β β€ β§ π β β0)
β (2βπ) β
β) |
31 | 30 | adantr 481 |
. . . . . . 7
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β (2βπ) β
β) |
32 | | 2cnd 12286 |
. . . . . . . 8
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β 2 β
β) |
33 | | 2ne0 12312 |
. . . . . . . . 9
β’ 2 β
0 |
34 | 33 | a1i 11 |
. . . . . . . 8
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β 2 β
0) |
35 | 7 | nn0zd 12580 |
. . . . . . . . 9
β’ ((π΄ β β€ β§ π β β0)
β π β
β€) |
36 | 35 | adantr 481 |
. . . . . . . 8
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β π β β€) |
37 | 32, 34, 36 | expne0d 14113 |
. . . . . . 7
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β (2βπ) β 0) |
38 | 29, 31, 37 | divcan1d 11987 |
. . . . . 6
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β ((π΄ / (2βπ)) Β· (2βπ)) = π΄) |
39 | 27, 38 | eqtrd 2772 |
. . . . 5
β’ (((π΄ β β€ β§ π β β0)
β§ (2βπ) β₯
π΄) β
((ββ(π΄ /
(2βπ))) Β·
(2βπ)) = π΄) |
40 | 39 | ex 413 |
. . . 4
β’ ((π΄ β β€ β§ π β β0)
β ((2βπ) β₯
π΄ β
((ββ(π΄ /
(2βπ))) Β·
(2βπ)) = π΄)) |
41 | 20, 40 | impbid 211 |
. . 3
β’ ((π΄ β β€ β§ π β β0)
β (((ββ(π΄
/ (2βπ))) Β·
(2βπ)) = π΄ β (2βπ) β₯ π΄)) |
42 | 2, 16, 41 | 3bitrrd 305 |
. 2
β’ ((π΄ β β€ β§ π β β0)
β ((2βπ) β₯
π΄ β ((bitsβπ΄) β©
(β€β₯βπ)) = (bitsβπ΄))) |
43 | | df-ss 3964 |
. 2
β’
((bitsβπ΄)
β (β€β₯βπ) β ((bitsβπ΄) β© (β€β₯βπ)) = (bitsβπ΄)) |
44 | 42, 43 | bitr4di 288 |
1
β’ ((π΄ β β€ β§ π β β0)
β ((2βπ) β₯
π΄ β (bitsβπ΄) β
(β€β₯βπ))) |