Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsuz Structured version   Visualization version   GIF version

Theorem bitsuz 15817
 Description: The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
bitsuz ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))

Proof of Theorem bitsuz
StepHypRef Expression
1 bitsres 15816 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
21eqeq1d 2803 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴) ↔ (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴)))
3 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
43zred 12079 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
5 2nn 11702 . . . . . . . . 9 2 ∈ ℕ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
7 simpr 488 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
86, 7nnexpcld 13606 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
94, 8nndivred 11683 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑𝑁)) ∈ ℝ)
109flcld 13167 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ)
118nnzd 12078 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
1210, 11zmulcld 12085 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ)
13 bitsf1 15789 . . . . 5 bits:ℤ–1-1→𝒫 ℕ0
14 f1fveq 7002 . . . . 5 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ)) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1513, 14mpan 689 . . . 4 ((((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
1612, 3, 15syl2anc 587 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))) = (bits‘𝐴) ↔ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
17 dvdsmul2 15628 . . . . . 6 (((⌊‘(𝐴 / (2↑𝑁))) ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
1810, 11, 17syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
19 breq2 5037 . . . . 5 (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → ((2↑𝑁) ∥ ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) ↔ (2↑𝑁) ∥ 𝐴))
2018, 19syl5ibcom 248 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 → (2↑𝑁) ∥ 𝐴))
218nnne0d 11679 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
22 dvdsval2 15606 . . . . . . . . . 10 (((2↑𝑁) ∈ ℤ ∧ (2↑𝑁) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2311, 21, 3, 22syl3anc 1368 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
2423biimpa 480 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (𝐴 / (2↑𝑁)) ∈ ℤ)
25 flid 13177 . . . . . . . 8 ((𝐴 / (2↑𝑁)) ∈ ℤ → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2624, 25syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (⌊‘(𝐴 / (2↑𝑁))) = (𝐴 / (2↑𝑁)))
2726oveq1d 7154 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = ((𝐴 / (2↑𝑁)) · (2↑𝑁)))
283zcnd 12080 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2928adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝐴 ∈ ℂ)
308nncnd 11645 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
3130adantr 484 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ∈ ℂ)
32 2cnd 11707 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ∈ ℂ)
33 2ne0 11733 . . . . . . . . 9 2 ≠ 0
3433a1i 11 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 2 ≠ 0)
357nn0zd 12077 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3635adantr 484 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → 𝑁 ∈ ℤ)
3732, 34, 36expne0d 13516 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → (2↑𝑁) ≠ 0)
3829, 31, 37divcan1d 11410 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((𝐴 / (2↑𝑁)) · (2↑𝑁)) = 𝐴)
3927, 38eqtrd 2836 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (2↑𝑁) ∥ 𝐴) → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴)
4039ex 416 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 → ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴))
4120, 40impbid 215 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)) = 𝐴 ↔ (2↑𝑁) ∥ 𝐴))
422, 16, 413bitrrd 309 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴)))
43 df-ss 3901 . 2 ((bits‘𝐴) ⊆ (ℤ𝑁) ↔ ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘𝐴))
4442, 43syl6bbr 292 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   ∩ cin 3883   ⊆ wss 3884  𝒫 cpw 4500   class class class wbr 5033  –1-1→wf1 6325  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  0cc0 10530   · cmul 10535   / cdiv 11290  ℕcn 11629  2c2 11684  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  ⌊cfl 13159  ↑cexp 13429   ∥ cdvds 15603  bitscbits 15762 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-had 1595  df-cad 1609  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-dvds 15604  df-bits 15765  df-sad 15794 This theorem is referenced by:  bitsshft  15818
 Copyright terms: Public domain W3C validator