Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   GIF version

Theorem lmclim2 37725
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
lmclim2.4 𝐽 = (MetOpen‘𝐷)
lmclim2.5 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
lmclim2.6 (𝜑𝑌𝑋)
Assertion
Ref Expression
lmclim2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌

Proof of Theorem lmclim2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmclim2.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 24198 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 nnuz 12812 . . 3 ℕ = (ℤ‘1)
6 1zzd 12540 . . 3 (𝜑 → 1 ∈ ℤ)
7 eqidd 2730 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8 lmclim2.3 . . 3 (𝜑𝐹:ℕ⟶𝑋)
91, 4, 5, 6, 7, 8lmmbrf 25138 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
10 lmclim2.5 . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
11 nnex 12168 . . . . . . 7 ℕ ∈ V
1211mptex 7179 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌)) ∈ V
1310, 12eqeltri 2824 . . . . 5 𝐺 ∈ V
1413a1i 11 . . . 4 (𝜑𝐺 ∈ V)
15 fveq2 6840 . . . . . . 7 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615oveq1d 7384 . . . . . 6 (𝑥 = 𝑘 → ((𝐹𝑥)𝐷𝑌) = ((𝐹𝑘)𝐷𝑌))
17 ovex 7402 . . . . . 6 ((𝐹𝑘)𝐷𝑌) ∈ V
1816, 10, 17fvmpt 6950 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
1918adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
202adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
218ffvelcdmda 7038 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
22 lmclim2.6 . . . . . . 7 (𝜑𝑌𝑋)
2322adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑌𝑋)
24 metcl 24196 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2520, 21, 23, 24syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2625recnd 11178 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℂ)
275, 6, 14, 19, 26clim0c 15449 . . 3 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥))
28 eluznn 12853 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
29 metge0 24209 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3020, 21, 23, 29syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3125, 30absidd 15365 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝐹𝑘)𝐷𝑌)) = ((𝐹𝑘)𝐷𝑌))
3231breq1d 5112 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3328, 32sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3433anassrs 467 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3534ralbidva 3154 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3635rexbidva 3155 . . . 4 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3736ralbidv 3156 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3822biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
3927, 37, 383bitrrd 306 . 2 (𝜑 → ((𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0))
409, 39bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  cuz 12769  +crp 12927  abscabs 15176  cli 15426  ∞Metcxmet 21225  Metcmet 21226  MetOpencmopn 21230  𝑡clm 23089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-lm 23092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator