Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   GIF version

Theorem lmclim2 37787
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
lmclim2.4 𝐽 = (MetOpen‘𝐷)
lmclim2.5 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
lmclim2.6 (𝜑𝑌𝑋)
Assertion
Ref Expression
lmclim2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌

Proof of Theorem lmclim2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmclim2.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 24278 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 nnuz 12900 . . 3 ℕ = (ℤ‘1)
6 1zzd 12628 . . 3 (𝜑 → 1 ∈ ℤ)
7 eqidd 2737 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8 lmclim2.3 . . 3 (𝜑𝐹:ℕ⟶𝑋)
91, 4, 5, 6, 7, 8lmmbrf 25219 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
10 lmclim2.5 . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
11 nnex 12251 . . . . . . 7 ℕ ∈ V
1211mptex 7220 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌)) ∈ V
1310, 12eqeltri 2831 . . . . 5 𝐺 ∈ V
1413a1i 11 . . . 4 (𝜑𝐺 ∈ V)
15 fveq2 6881 . . . . . . 7 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615oveq1d 7425 . . . . . 6 (𝑥 = 𝑘 → ((𝐹𝑥)𝐷𝑌) = ((𝐹𝑘)𝐷𝑌))
17 ovex 7443 . . . . . 6 ((𝐹𝑘)𝐷𝑌) ∈ V
1816, 10, 17fvmpt 6991 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
1918adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
202adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
218ffvelcdmda 7079 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
22 lmclim2.6 . . . . . . 7 (𝜑𝑌𝑋)
2322adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑌𝑋)
24 metcl 24276 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2520, 21, 23, 24syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2625recnd 11268 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℂ)
275, 6, 14, 19, 26clim0c 15528 . . 3 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥))
28 eluznn 12939 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
29 metge0 24289 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3020, 21, 23, 29syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3125, 30absidd 15446 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝐹𝑘)𝐷𝑌)) = ((𝐹𝑘)𝐷𝑌))
3231breq1d 5134 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3328, 32sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3433anassrs 467 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3534ralbidva 3162 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3635rexbidva 3163 . . . 4 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3736ralbidv 3164 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3822biantrurd 532 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
3927, 37, 383bitrrd 306 . 2 (𝜑 → ((𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0))
409, 39bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   < clt 11274  cle 11275  cn 12245  cuz 12857  +crp 13013  abscabs 15258  cli 15505  ∞Metcxmet 21305  Metcmet 21306  MetOpencmopn 21310  𝑡clm 23169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-lm 23172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator