| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmclim2 | Structured version Visualization version GIF version | ||
| Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmclim2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| lmclim2.3 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmclim2.4 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmclim2.5 | ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) |
| lmclim2.6 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| lmclim2 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim2.4 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | lmclim2.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | metxmet 24220 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | nnuz 12778 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 1zzd 12506 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 7 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 8 | lmclim2.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 9 | 1, 4, 5, 6, 7, 8 | lmmbrf 25160 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 10 | lmclim2.5 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) | |
| 11 | nnex 12134 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 12 | 11 | mptex 7159 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) ∈ V |
| 13 | 10, 12 | eqeltri 2824 | . . . . 5 ⊢ 𝐺 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 15 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 16 | 15 | oveq1d 7364 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥)𝐷𝑌) = ((𝐹‘𝑘)𝐷𝑌)) |
| 17 | ovex 7382 | . . . . . 6 ⊢ ((𝐹‘𝑘)𝐷𝑌) ∈ V | |
| 18 | 16, 10, 17 | fvmpt 6930 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
| 21 | 8 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 22 | lmclim2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ 𝑋) |
| 24 | metcl 24218 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) | |
| 25 | 20, 21, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) |
| 26 | 25 | recnd 11143 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℂ) |
| 27 | 5, 6, 14, 19, 26 | clim0c 15414 | . . 3 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥)) |
| 28 | eluznn 12819 | . . . . . . . 8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
| 29 | metge0 24231 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) | |
| 30 | 20, 21, 23, 29 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) |
| 31 | 25, 30 | absidd 15330 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝐹‘𝑘)𝐷𝑌)) = ((𝐹‘𝑘)𝐷𝑌)) |
| 32 | 31 | breq1d 5102 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 33 | 28, 32 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 34 | 33 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 35 | 34 | ralbidva 3150 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 36 | 35 | rexbidva 3151 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 37 | 36 | ralbidv 3152 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 38 | 22 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 39 | 27, 37, 38 | 3bitrrd 306 | . 2 ⊢ (𝜑 → ((𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0)) |
| 40 | 9, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 < clt 11149 ≤ cle 11150 ℕcn 12128 ℤ≥cuz 12735 ℝ+crp 12893 abscabs 15141 ⇝ cli 15391 ∞Metcxmet 21246 Metcmet 21247 MetOpencmopn 21251 ⇝𝑡clm 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-lm 23114 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |