Step | Hyp | Ref
| Expression |
1 | | lmclim2.4 |
. . 3
β’ π½ = (MetOpenβπ·) |
2 | | lmclim2.2 |
. . . 4
β’ (π β π· β (Metβπ)) |
3 | | metxmet 24060 |
. . . 4
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
4 | 2, 3 | syl 17 |
. . 3
β’ (π β π· β (βMetβπ)) |
5 | | nnuz 12869 |
. . 3
β’ β =
(β€β₯β1) |
6 | | 1zzd 12597 |
. . 3
β’ (π β 1 β
β€) |
7 | | eqidd 2731 |
. . 3
β’ ((π β§ π β β) β (πΉβπ) = (πΉβπ)) |
8 | | lmclim2.3 |
. . 3
β’ (π β πΉ:ββΆπ) |
9 | 1, 4, 5, 6, 7, 8 | lmmbrf 25010 |
. 2
β’ (π β (πΉ(βπ‘βπ½)π β (π β π β§ βπ₯ β β+ βπ β β βπ β
(β€β₯βπ)((πΉβπ)π·π) < π₯))) |
10 | | lmclim2.5 |
. . . . . 6
β’ πΊ = (π₯ β β β¦ ((πΉβπ₯)π·π)) |
11 | | nnex 12222 |
. . . . . . 7
β’ β
β V |
12 | 11 | mptex 7226 |
. . . . . 6
β’ (π₯ β β β¦ ((πΉβπ₯)π·π)) β V |
13 | 10, 12 | eqeltri 2827 |
. . . . 5
β’ πΊ β V |
14 | 13 | a1i 11 |
. . . 4
β’ (π β πΊ β V) |
15 | | fveq2 6890 |
. . . . . . 7
β’ (π₯ = π β (πΉβπ₯) = (πΉβπ)) |
16 | 15 | oveq1d 7426 |
. . . . . 6
β’ (π₯ = π β ((πΉβπ₯)π·π) = ((πΉβπ)π·π)) |
17 | | ovex 7444 |
. . . . . 6
β’ ((πΉβπ)π·π) β V |
18 | 16, 10, 17 | fvmpt 6997 |
. . . . 5
β’ (π β β β (πΊβπ) = ((πΉβπ)π·π)) |
19 | 18 | adantl 480 |
. . . 4
β’ ((π β§ π β β) β (πΊβπ) = ((πΉβπ)π·π)) |
20 | 2 | adantr 479 |
. . . . . 6
β’ ((π β§ π β β) β π· β (Metβπ)) |
21 | 8 | ffvelcdmda 7085 |
. . . . . 6
β’ ((π β§ π β β) β (πΉβπ) β π) |
22 | | lmclim2.6 |
. . . . . . 7
β’ (π β π β π) |
23 | 22 | adantr 479 |
. . . . . 6
β’ ((π β§ π β β) β π β π) |
24 | | metcl 24058 |
. . . . . 6
β’ ((π· β (Metβπ) β§ (πΉβπ) β π β§ π β π) β ((πΉβπ)π·π) β β) |
25 | 20, 21, 23, 24 | syl3anc 1369 |
. . . . 5
β’ ((π β§ π β β) β ((πΉβπ)π·π) β β) |
26 | 25 | recnd 11246 |
. . . 4
β’ ((π β§ π β β) β ((πΉβπ)π·π) β β) |
27 | 5, 6, 14, 19, 26 | clim0c 15455 |
. . 3
β’ (π β (πΊ β 0 β βπ₯ β β+ βπ β β βπ β
(β€β₯βπ)(absβ((πΉβπ)π·π)) < π₯)) |
28 | | eluznn 12906 |
. . . . . . . 8
β’ ((π β β β§ π β
(β€β₯βπ)) β π β β) |
29 | | metge0 24071 |
. . . . . . . . . . 11
β’ ((π· β (Metβπ) β§ (πΉβπ) β π β§ π β π) β 0 β€ ((πΉβπ)π·π)) |
30 | 20, 21, 23, 29 | syl3anc 1369 |
. . . . . . . . . 10
β’ ((π β§ π β β) β 0 β€ ((πΉβπ)π·π)) |
31 | 25, 30 | absidd 15373 |
. . . . . . . . 9
β’ ((π β§ π β β) β (absβ((πΉβπ)π·π)) = ((πΉβπ)π·π)) |
32 | 31 | breq1d 5157 |
. . . . . . . 8
β’ ((π β§ π β β) β ((absβ((πΉβπ)π·π)) < π₯ β ((πΉβπ)π·π) < π₯)) |
33 | 28, 32 | sylan2 591 |
. . . . . . 7
β’ ((π β§ (π β β β§ π β (β€β₯βπ))) β ((absβ((πΉβπ)π·π)) < π₯ β ((πΉβπ)π·π) < π₯)) |
34 | 33 | anassrs 466 |
. . . . . 6
β’ (((π β§ π β β) β§ π β (β€β₯βπ)) β ((absβ((πΉβπ)π·π)) < π₯ β ((πΉβπ)π·π) < π₯)) |
35 | 34 | ralbidva 3173 |
. . . . 5
β’ ((π β§ π β β) β (βπ β
(β€β₯βπ)(absβ((πΉβπ)π·π)) < π₯ β βπ β (β€β₯βπ)((πΉβπ)π·π) < π₯)) |
36 | 35 | rexbidva 3174 |
. . . 4
β’ (π β (βπ β β βπ β (β€β₯βπ)(absβ((πΉβπ)π·π)) < π₯ β βπ β β βπ β (β€β₯βπ)((πΉβπ)π·π) < π₯)) |
37 | 36 | ralbidv 3175 |
. . 3
β’ (π β (βπ₯ β β+
βπ β β
βπ β
(β€β₯βπ)(absβ((πΉβπ)π·π)) < π₯ β βπ₯ β β+ βπ β β βπ β
(β€β₯βπ)((πΉβπ)π·π) < π₯)) |
38 | 22 | biantrurd 531 |
. . 3
β’ (π β (βπ₯ β β+
βπ β β
βπ β
(β€β₯βπ)((πΉβπ)π·π) < π₯ β (π β π β§ βπ₯ β β+ βπ β β βπ β
(β€β₯βπ)((πΉβπ)π·π) < π₯))) |
39 | 27, 37, 38 | 3bitrrd 305 |
. 2
β’ (π β ((π β π β§ βπ₯ β β+ βπ β β βπ β
(β€β₯βπ)((πΉβπ)π·π) < π₯) β πΊ β 0)) |
40 | 9, 39 | bitrd 278 |
1
β’ (π β (πΉ(βπ‘βπ½)π β πΊ β 0)) |