| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmclim2 | Structured version Visualization version GIF version | ||
| Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmclim2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| lmclim2.3 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmclim2.4 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmclim2.5 | ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) |
| lmclim2.6 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| lmclim2 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim2.4 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | lmclim2.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | metxmet 24222 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | nnuz 12836 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 1zzd 12564 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 7 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 8 | lmclim2.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 9 | 1, 4, 5, 6, 7, 8 | lmmbrf 25162 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 10 | lmclim2.5 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) | |
| 11 | nnex 12192 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 12 | 11 | mptex 7197 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) ∈ V |
| 13 | 10, 12 | eqeltri 2824 | . . . . 5 ⊢ 𝐺 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 15 | fveq2 6858 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 16 | 15 | oveq1d 7402 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥)𝐷𝑌) = ((𝐹‘𝑘)𝐷𝑌)) |
| 17 | ovex 7420 | . . . . . 6 ⊢ ((𝐹‘𝑘)𝐷𝑌) ∈ V | |
| 18 | 16, 10, 17 | fvmpt 6968 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
| 21 | 8 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 22 | lmclim2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ 𝑋) |
| 24 | metcl 24220 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) | |
| 25 | 20, 21, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) |
| 26 | 25 | recnd 11202 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℂ) |
| 27 | 5, 6, 14, 19, 26 | clim0c 15473 | . . 3 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥)) |
| 28 | eluznn 12877 | . . . . . . . 8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
| 29 | metge0 24233 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) | |
| 30 | 20, 21, 23, 29 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) |
| 31 | 25, 30 | absidd 15389 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝐹‘𝑘)𝐷𝑌)) = ((𝐹‘𝑘)𝐷𝑌)) |
| 32 | 31 | breq1d 5117 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 33 | 28, 32 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 34 | 33 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 35 | 34 | ralbidva 3154 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 36 | 35 | rexbidva 3155 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 37 | 36 | ralbidv 3156 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 38 | 22 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 39 | 27, 37, 38 | 3bitrrd 306 | . 2 ⊢ (𝜑 → ((𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0)) |
| 40 | 9, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤ≥cuz 12793 ℝ+crp 12951 abscabs 15200 ⇝ cli 15450 ∞Metcxmet 21249 Metcmet 21250 MetOpencmopn 21254 ⇝𝑡clm 23113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-lm 23116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |