Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmclim2 | Structured version Visualization version GIF version |
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
lmclim2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
lmclim2.3 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmclim2.4 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmclim2.5 | ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) |
lmclim2.6 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
lmclim2 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmclim2.4 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | lmclim2.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
3 | metxmet 23487 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | nnuz 12621 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
6 | 1zzd 12351 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
7 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
8 | lmclim2.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
9 | 1, 4, 5, 6, 7, 8 | lmmbrf 24426 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
10 | lmclim2.5 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) | |
11 | nnex 11979 | . . . . . . 7 ⊢ ℕ ∈ V | |
12 | 11 | mptex 7099 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) ∈ V |
13 | 10, 12 | eqeltri 2835 | . . . . 5 ⊢ 𝐺 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
15 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
16 | 15 | oveq1d 7290 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥)𝐷𝑌) = ((𝐹‘𝑘)𝐷𝑌)) |
17 | ovex 7308 | . . . . . 6 ⊢ ((𝐹‘𝑘)𝐷𝑌) ∈ V | |
18 | 16, 10, 17 | fvmpt 6875 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
19 | 18 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
20 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
21 | 8 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
22 | lmclim2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ 𝑋) |
24 | metcl 23485 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) | |
25 | 20, 21, 23, 24 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) |
26 | 25 | recnd 11003 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℂ) |
27 | 5, 6, 14, 19, 26 | clim0c 15216 | . . 3 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥)) |
28 | eluznn 12658 | . . . . . . . 8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
29 | metge0 23498 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) | |
30 | 20, 21, 23, 29 | syl3anc 1370 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) |
31 | 25, 30 | absidd 15134 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝐹‘𝑘)𝐷𝑌)) = ((𝐹‘𝑘)𝐷𝑌)) |
32 | 31 | breq1d 5084 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
33 | 28, 32 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
34 | 33 | anassrs 468 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
35 | 34 | ralbidva 3111 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
36 | 35 | rexbidva 3225 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
37 | 36 | ralbidv 3112 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
38 | 22 | biantrurd 533 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
39 | 27, 37, 38 | 3bitrrd 306 | . 2 ⊢ (𝜑 → ((𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0)) |
40 | 9, 39 | bitrd 278 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 < clt 11009 ≤ cle 11010 ℕcn 11973 ℤ≥cuz 12582 ℝ+crp 12730 abscabs 14945 ⇝ cli 15193 ∞Metcxmet 20582 Metcmet 20583 MetOpencmopn 20587 ⇝𝑡clm 22377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-lm 22380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |