| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmclim2 | Structured version Visualization version GIF version | ||
| Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmclim2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| lmclim2.3 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmclim2.4 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmclim2.5 | ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) |
| lmclim2.6 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| lmclim2 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmclim2.4 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | lmclim2.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 3 | metxmet 24249 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | nnuz 12775 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 1zzd 12503 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 7 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 8 | lmclim2.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 9 | 1, 4, 5, 6, 7, 8 | lmmbrf 25189 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 10 | lmclim2.5 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) | |
| 11 | nnex 12131 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 12 | 11 | mptex 7157 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) ∈ V |
| 13 | 10, 12 | eqeltri 2827 | . . . . 5 ⊢ 𝐺 ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 15 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 16 | 15 | oveq1d 7361 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥)𝐷𝑌) = ((𝐹‘𝑘)𝐷𝑌)) |
| 17 | ovex 7379 | . . . . . 6 ⊢ ((𝐹‘𝑘)𝐷𝑌) ∈ V | |
| 18 | 16, 10, 17 | fvmpt 6929 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
| 20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
| 21 | 8 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 22 | lmclim2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ 𝑋) |
| 24 | metcl 24247 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) | |
| 25 | 20, 21, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) |
| 26 | 25 | recnd 11140 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℂ) |
| 27 | 5, 6, 14, 19, 26 | clim0c 15414 | . . 3 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥)) |
| 28 | eluznn 12816 | . . . . . . . 8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
| 29 | metge0 24260 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) | |
| 30 | 20, 21, 23, 29 | syl3anc 1373 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) |
| 31 | 25, 30 | absidd 15330 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝐹‘𝑘)𝐷𝑌)) = ((𝐹‘𝑘)𝐷𝑌)) |
| 32 | 31 | breq1d 5099 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 33 | 28, 32 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 34 | 33 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 35 | 34 | ralbidva 3153 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 36 | 35 | rexbidva 3154 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 37 | 36 | ralbidv 3155 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
| 38 | 22 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
| 39 | 27, 37, 38 | 3bitrrd 306 | . 2 ⊢ (𝜑 → ((𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0)) |
| 40 | 9, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 ℕcn 12125 ℤ≥cuz 12732 ℝ+crp 12890 abscabs 15141 ⇝ cli 15391 ∞Metcxmet 21276 Metcmet 21277 MetOpencmopn 21281 ⇝𝑡clm 23141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-lm 23144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |