MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmeqker Structured version   Visualization version   GIF version

Theorem ghmeqker 19157
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b 𝐵 = (Base‘𝑆)
ghmeqker.z 0 = (0g𝑇)
ghmeqker.k 𝐾 = (𝐹 “ { 0 })
ghmeqker.m = (-g𝑆)
Assertion
Ref Expression
ghmeqker ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5 𝐾 = (𝐹 “ { 0 })
2 ghmeqker.z . . . . . . 7 0 = (0g𝑇)
32sneqi 4638 . . . . . 6 { 0 } = {(0g𝑇)}
43imaeq2i 6056 . . . . 5 (𝐹 “ { 0 }) = (𝐹 “ {(0g𝑇)})
51, 4eqtri 2758 . . . 4 𝐾 = (𝐹 “ {(0g𝑇)})
65eleq2i 2823 . . 3 ((𝑈 𝑉) ∈ 𝐾 ↔ (𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}))
7 ghmeqker.b . . . . . . 7 𝐵 = (Base‘𝑆)
8 eqid 2730 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 19134 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
109ffnd 6717 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn 𝐵)
11103ad2ant1 1131 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹 Fn 𝐵)
12 fniniseg 7060 . . . 4 (𝐹 Fn 𝐵 → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
1311, 12syl 17 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
146, 13bitrid 282 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ 𝐾 ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
15 ghmgrp1 19132 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
16 ghmeqker.m . . . . . 6 = (-g𝑆)
177, 16grpsubcl 18939 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1815, 17syl3an1 1161 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1918biantrurd 531 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
20 eqid 2730 . . . . 5 (-g𝑇) = (-g𝑇)
217, 16, 20ghmsub 19138 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)(-g𝑇)(𝐹𝑉)))
2221eqeq1d 2732 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
2319, 22bitr3d 280 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇)) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
24 ghmgrp2 19133 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
25243ad2ant1 1131 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑇 ∈ Grp)
2693ad2ant1 1131 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
27 simp2 1135 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑈𝐵)
2826, 27ffvelcdmd 7086 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
29 simp3 1136 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
3026, 29ffvelcdmd 7086 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
31 eqid 2730 . . . 4 (0g𝑇) = (0g𝑇)
328, 31, 20grpsubeq0 18945 . . 3 ((𝑇 ∈ Grp ∧ (𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3325, 28, 30, 32syl3anc 1369 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3414, 23, 333bitrrd 305 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  {csn 4627  ccnv 5674  cima 5678   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  Basecbs 17148  0gc0g 17389  Grpcgrp 18855  -gcsg 18857   GrpHom cghm 19127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-ghm 19128
This theorem is referenced by:  kerf1ghm  19161  kercvrlsm  42127
  Copyright terms: Public domain W3C validator