MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmeqker Structured version   Visualization version   GIF version

Theorem ghmeqker 18385
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b 𝐵 = (Base‘𝑆)
ghmeqker.z 0 = (0g𝑇)
ghmeqker.k 𝐾 = (𝐹 “ { 0 })
ghmeqker.m = (-g𝑆)
Assertion
Ref Expression
ghmeqker ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5 𝐾 = (𝐹 “ { 0 })
2 ghmeqker.z . . . . . . 7 0 = (0g𝑇)
32sneqi 4578 . . . . . 6 { 0 } = {(0g𝑇)}
43imaeq2i 5927 . . . . 5 (𝐹 “ { 0 }) = (𝐹 “ {(0g𝑇)})
51, 4eqtri 2844 . . . 4 𝐾 = (𝐹 “ {(0g𝑇)})
65eleq2i 2904 . . 3 ((𝑈 𝑉) ∈ 𝐾 ↔ (𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}))
7 ghmeqker.b . . . . . . 7 𝐵 = (Base‘𝑆)
8 eqid 2821 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 18362 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
109ffnd 6515 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn 𝐵)
11103ad2ant1 1129 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹 Fn 𝐵)
12 fniniseg 6830 . . . 4 (𝐹 Fn 𝐵 → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
1311, 12syl 17 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
146, 13syl5bb 285 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ 𝐾 ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
15 ghmgrp1 18360 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
16 ghmeqker.m . . . . . 6 = (-g𝑆)
177, 16grpsubcl 18179 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1815, 17syl3an1 1159 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1918biantrurd 535 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
20 eqid 2821 . . . . 5 (-g𝑇) = (-g𝑇)
217, 16, 20ghmsub 18366 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)(-g𝑇)(𝐹𝑉)))
2221eqeq1d 2823 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
2319, 22bitr3d 283 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇)) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
24 ghmgrp2 18361 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
25243ad2ant1 1129 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑇 ∈ Grp)
2693ad2ant1 1129 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
27 simp2 1133 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑈𝐵)
2826, 27ffvelrnd 6852 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
29 simp3 1134 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
3026, 29ffvelrnd 6852 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
31 eqid 2821 . . . 4 (0g𝑇) = (0g𝑇)
328, 31, 20grpsubeq0 18185 . . 3 ((𝑇 ∈ Grp ∧ (𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3325, 28, 30, 32syl3anc 1367 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3414, 23, 333bitrrd 308 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {csn 4567  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  0gc0g 16713  Grpcgrp 18103  -gcsg 18105   GrpHom cghm 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-ghm 18356
This theorem is referenced by:  kerf1ghm  19497  kerf1hrmOLD  19498  kercvrlsm  39703
  Copyright terms: Public domain W3C validator