Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest Structured version   Visualization version   GIF version

Theorem rrx2linest 44561
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linest.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2linest.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
rrx2linest.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1185 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑋𝑃)
2 simpl2 1186 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑌𝑃)
3 simpr 485 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
4 simpr 485 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
54anim1i 614 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
6 rrx2line.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
76raleqi 3419 . . . . . . . . . . . . 13 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
8 1ex 10626 . . . . . . . . . . . . . 14 1 ∈ V
9 2ex 11703 . . . . . . . . . . . . . 14 2 ∈ V
10 fveq2 6667 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
11 fveq2 6667 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1210, 11eqeq12d 2842 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
13 fveq2 6667 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
14 fveq2 6667 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
1513, 14eqeq12d 2842 . . . . . . . . . . . . . 14 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
168, 9, 12, 15ralpr 4635 . . . . . . . . . . . . 13 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
177, 16bitri 276 . . . . . . . . . . . 12 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
185, 17sylibr 235 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
19 elmapfn 8419 . . . . . . . . . . . . . . 15 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
20 rrx2line.b . . . . . . . . . . . . . . 15 𝑃 = (ℝ ↑m 𝐼)
2119, 20eleq2s 2936 . . . . . . . . . . . . . 14 (𝑋𝑃𝑋 Fn 𝐼)
22 elmapfn 8419 . . . . . . . . . . . . . . 15 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
2322, 20eleq2s 2936 . . . . . . . . . . . . . 14 (𝑌𝑃𝑌 Fn 𝐼)
2421, 23anim12i 612 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2524ad2antrr 722 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
26 eqfnfv 6798 . . . . . . . . . . . 12 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2818, 27mpbird 258 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)
2928ex 413 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) = (𝑌‘2) → 𝑋 = 𝑌))
3029necon3d 3042 . . . . . . . 8 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2)))
3130ex 413 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) = (𝑌‘1) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2))))
3231com23 86 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2))))
33323impia 1111 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2)))
3433imp 407 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) ≠ (𝑌‘2))
35 rrx2line.e . . . . 5 𝐸 = (ℝ^‘𝐼)
36 rrx2line.l . . . . 5 𝐿 = (LineM𝐸)
376, 35, 20, 36rrx2vlinest 44560 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
381, 2, 3, 34, 37syl112anc 1368 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
39 ancom 461 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)))
40 simplr 765 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋𝑃𝑌𝑃𝑋𝑌))
41 simpr 485 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝𝑃)
42 simpll 763 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘1) = (𝑌‘1))
43 rrx2linest.a . . . . . . . . . . 11 𝐴 = ((𝑌‘1) − (𝑋‘1))
4443oveq1i 7158 . . . . . . . . . 10 (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))
4544a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)))
46 oveq2 7156 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
4746adantl 482 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
486, 20rrx2pxel 44530 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
4948recnd 10658 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
50493ad2ant2 1128 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℂ)
5150ad2antrr 722 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑌‘1) ∈ ℂ)
5251subidd 10974 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑌‘1)) = 0)
5347, 52eqtrd 2861 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = 0)
5453oveq1d 7163 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (0 · (𝑝‘2)))
556, 20rrx2pyel 44531 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
5655recnd 10658 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
5756ad2antlr 723 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑝‘2) ∈ ℂ)
5857mul02d 10827 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (0 · (𝑝‘2)) = 0)
5945, 54, 583eqtrd 2865 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = 0)
60 rrx2linest.b . . . . . . . . . . 11 𝐵 = ((𝑌‘2) − (𝑋‘2))
6160oveq1i 7158 . . . . . . . . . 10 (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))
6261a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
63 rrx2linest.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
64 oveq1 7155 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) · (𝑌‘2)) = ((𝑌‘1) · (𝑌‘2)))
6564oveq2d 7164 . . . . . . . . . . 11 ((𝑋‘1) = (𝑌‘1) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6663, 65syl5eq 2873 . . . . . . . . . 10 ((𝑋‘1) = (𝑌‘1) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6766adantl 482 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6862, 67oveq12d 7166 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐵 · (𝑝‘1)) + 𝐶) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))))
6959, 68eqeq12d 2842 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
7040, 41, 42, 69syl21anc 835 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
716, 20rrx2pyel 44531 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
7271recnd 10658 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
73723ad2ant2 1128 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℂ)
7450, 73mulcomd 10651 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) · (𝑌‘2)) = ((𝑌‘2) · (𝑌‘1)))
7574oveq2d 7164 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
766, 20rrx2pyel 44531 . . . . . . . . . . . . . 14 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
7776recnd 10658 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
78773ad2ant1 1127 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℂ)
7978, 73, 50subdird 11086 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
8075, 79eqtr4d 2864 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8180ad2antlr 723 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8281oveq2d 7164 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
8382eqeq2d 2837 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))))
84 eqcom 2833 . . . . . . . . 9 (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0)
8584a1i 11 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0))
8673ad2antlr 723 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8778ad2antlr 723 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
8886, 87subcld 10986 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
896, 20rrx2pxel 44530 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
9089recnd 10658 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
9190adantl 482 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
9288, 91mulcld 10650 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
9387, 86subcld 10986 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℂ)
9450ad2antlr 723 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℂ)
9593, 94mulcld 10650 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ)
96 addeq0 11052 . . . . . . . . 9 (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ ∧ (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9792, 95, 96syl2anc 584 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9893, 94mulneg1d 11082 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
9987, 86negsubdi2d 11002 . . . . . . . . . . . 12 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -((𝑋‘2) − (𝑌‘2)) = ((𝑌‘2) − (𝑋‘2)))
10099oveq1d 7163 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
10198, 100eqtr3d 2863 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
102101eqeq2d 2837 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1))))
103 necom 3074 . . . . . . . . . . . . 13 ((𝑋‘2) ≠ (𝑌‘2) ↔ (𝑌‘2) ≠ (𝑋‘2))
10434, 39, 1033imtr3i 292 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘2) ≠ (𝑋‘2))
105104adantr 481 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ≠ (𝑋‘2))
10686, 87, 105subne0d 10995 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
10791, 94, 88, 106mulcand 11262 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
108102, 107bitrd 280 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
10985, 97, 1083bitrd 306 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ (𝑝‘1) = (𝑌‘1)))
11083, 109bitrd 280 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑌‘1)))
111 simpl 483 . . . . . . . . 9 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋‘1) = (𝑌‘1))
112111eqcomd 2832 . . . . . . . 8 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘1) = (𝑋‘1))
113112adantr 481 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) = (𝑋‘1))
114113eqeq2d 2837 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑌‘1) ↔ (𝑝‘1) = (𝑋‘1)))
11570, 110, 1143bitrrd 307 . . . . 5 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
116115rabbidva 3484 . . . 4 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11739, 116sylbi 218 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11838, 117eqtrd 2861 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
1196, 35, 20, 36rrx2line 44559 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
120119adantr 481 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
121 df-ne 3022 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) ↔ ¬ (𝑋‘1) = (𝑌‘1))
12289ad2antlr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘1) ∈ ℝ)
1236, 20rrx2pxel 44530 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1241233ad2ant1 1127 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
125124ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
126483ad2ant2 1128 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
127126ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
128 simpr 485 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
12955ad2antlr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘2) ∈ ℝ)
130763ad2ant1 1127 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
131130ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
132713ad2ant2 1128 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
133132ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
134122, 125, 127, 128, 129, 131, 133affinecomb2 44522 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
13543eqcomi 2835 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 𝐴
136135oveq1i 7158 . . . . . . . . . . 11 (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (𝐴 · (𝑝‘2))
13760eqcomi 2835 . . . . . . . . . . . . 13 ((𝑌‘2) − (𝑋‘2)) = 𝐵
138137oveq1i 7158 . . . . . . . . . . . 12 (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐵 · (𝑝‘1))
13963eqcomi 2835 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝐶
140138, 139oveq12i 7160 . . . . . . . . . . 11 ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((𝐵 · (𝑝‘1)) + 𝐶)
141136, 140eqeq12i 2841 . . . . . . . . . 10 ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))
142134, 141syl6bb 288 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
143142expcom 414 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
144121, 143sylbir 236 . . . . . . 7 (¬ (𝑋‘1) = (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
145144expd 416 . . . . . 6 (¬ (𝑋‘1) = (𝑌‘1) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))))
146145impcom 408 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
147146imp 407 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
148147rabbidva 3484 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
149120, 148eqtrd 2861 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
150118, 149pm2.61dan 809 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  {crab 3147  {cpr 4566   Fn wfn 6347  cfv 6352  (class class class)co 7148  m cmap 8396  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  2c2 11681  ℝ^crrx 23901  LineMcline 44546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-mhm 17944  df-grp 18036  df-minusg 18037  df-sbg 18038  df-subg 18206  df-ghm 18286  df-cmn 18828  df-mgp 19160  df-ur 19172  df-ring 19219  df-cring 19220  df-oppr 19293  df-dvdsr 19311  df-unit 19312  df-invr 19342  df-dvr 19353  df-rnghom 19387  df-drng 19424  df-field 19425  df-subrg 19453  df-staf 19536  df-srng 19537  df-lmod 19556  df-lss 19624  df-sra 19864  df-rgmod 19865  df-cnfld 20462  df-refld 20665  df-dsmm 20792  df-frlm 20807  df-tng 23109  df-tcph 23688  df-rrx 23903  df-line 44548
This theorem is referenced by:  rrx2linest2  44563  line2x  44573  itsclinecirc0b  44593
  Copyright terms: Public domain W3C validator