Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest Structured version   Visualization version   GIF version

Theorem rrx2linest 44657
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linest.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2linest.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
rrx2linest.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1183 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑋𝑃)
2 simpl2 1184 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑌𝑃)
3 simpr 485 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
4 simpr 485 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
54anim1i 614 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
6 rrx2line.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
76raleqi 3411 . . . . . . . . . . . . 13 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
8 1ex 10625 . . . . . . . . . . . . . 14 1 ∈ V
9 2ex 11702 . . . . . . . . . . . . . 14 2 ∈ V
10 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
11 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1210, 11eqeq12d 2834 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
13 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
14 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
1513, 14eqeq12d 2834 . . . . . . . . . . . . . 14 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
168, 9, 12, 15ralpr 4628 . . . . . . . . . . . . 13 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
177, 16bitri 276 . . . . . . . . . . . 12 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
185, 17sylibr 235 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
19 elmapfn 8418 . . . . . . . . . . . . . . 15 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
20 rrx2line.b . . . . . . . . . . . . . . 15 𝑃 = (ℝ ↑m 𝐼)
2119, 20eleq2s 2928 . . . . . . . . . . . . . 14 (𝑋𝑃𝑋 Fn 𝐼)
22 elmapfn 8418 . . . . . . . . . . . . . . 15 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
2322, 20eleq2s 2928 . . . . . . . . . . . . . 14 (𝑌𝑃𝑌 Fn 𝐼)
2421, 23anim12i 612 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2524ad2antrr 722 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
26 eqfnfv 6794 . . . . . . . . . . . 12 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2818, 27mpbird 258 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)
2928ex 413 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) = (𝑌‘2) → 𝑋 = 𝑌))
3029necon3d 3034 . . . . . . . 8 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2)))
3130ex 413 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) = (𝑌‘1) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2))))
3231com23 86 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2))))
33323impia 1109 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2)))
3433imp 407 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) ≠ (𝑌‘2))
35 rrx2line.e . . . . 5 𝐸 = (ℝ^‘𝐼)
36 rrx2line.l . . . . 5 𝐿 = (LineM𝐸)
376, 35, 20, 36rrx2vlinest 44656 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
381, 2, 3, 34, 37syl112anc 1366 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
39 ancom 461 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)))
40 simplr 765 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋𝑃𝑌𝑃𝑋𝑌))
41 simpr 485 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝𝑃)
42 simpll 763 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘1) = (𝑌‘1))
43 rrx2linest.a . . . . . . . . . . 11 𝐴 = ((𝑌‘1) − (𝑋‘1))
4443oveq1i 7155 . . . . . . . . . 10 (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))
4544a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)))
46 oveq2 7153 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
4746adantl 482 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
486, 20rrx2pxel 44626 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
4948recnd 10657 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
50493ad2ant2 1126 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℂ)
5150ad2antrr 722 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑌‘1) ∈ ℂ)
5251subidd 10973 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑌‘1)) = 0)
5347, 52eqtrd 2853 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = 0)
5453oveq1d 7160 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (0 · (𝑝‘2)))
556, 20rrx2pyel 44627 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
5655recnd 10657 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
5756ad2antlr 723 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑝‘2) ∈ ℂ)
5857mul02d 10826 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (0 · (𝑝‘2)) = 0)
5945, 54, 583eqtrd 2857 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = 0)
60 rrx2linest.b . . . . . . . . . . 11 𝐵 = ((𝑌‘2) − (𝑋‘2))
6160oveq1i 7155 . . . . . . . . . 10 (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))
6261a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
63 rrx2linest.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
64 oveq1 7152 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) · (𝑌‘2)) = ((𝑌‘1) · (𝑌‘2)))
6564oveq2d 7161 . . . . . . . . . . 11 ((𝑋‘1) = (𝑌‘1) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6663, 65syl5eq 2865 . . . . . . . . . 10 ((𝑋‘1) = (𝑌‘1) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6766adantl 482 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6862, 67oveq12d 7163 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐵 · (𝑝‘1)) + 𝐶) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))))
6959, 68eqeq12d 2834 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
7040, 41, 42, 69syl21anc 833 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
716, 20rrx2pyel 44627 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
7271recnd 10657 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
73723ad2ant2 1126 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℂ)
7450, 73mulcomd 10650 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) · (𝑌‘2)) = ((𝑌‘2) · (𝑌‘1)))
7574oveq2d 7161 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
766, 20rrx2pyel 44627 . . . . . . . . . . . . . 14 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
7776recnd 10657 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
78773ad2ant1 1125 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℂ)
7978, 73, 50subdird 11085 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
8075, 79eqtr4d 2856 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8180ad2antlr 723 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8281oveq2d 7161 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
8382eqeq2d 2829 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))))
84 eqcom 2825 . . . . . . . . 9 (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0)
8584a1i 11 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0))
8673ad2antlr 723 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8778ad2antlr 723 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
8886, 87subcld 10985 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
896, 20rrx2pxel 44626 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
9089recnd 10657 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
9190adantl 482 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
9288, 91mulcld 10649 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
9387, 86subcld 10985 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℂ)
9450ad2antlr 723 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℂ)
9593, 94mulcld 10649 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ)
96 addeq0 11051 . . . . . . . . 9 (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ ∧ (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9792, 95, 96syl2anc 584 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9893, 94mulneg1d 11081 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
9987, 86negsubdi2d 11001 . . . . . . . . . . . 12 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -((𝑋‘2) − (𝑌‘2)) = ((𝑌‘2) − (𝑋‘2)))
10099oveq1d 7160 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
10198, 100eqtr3d 2855 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
102101eqeq2d 2829 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1))))
103 necom 3066 . . . . . . . . . . . . 13 ((𝑋‘2) ≠ (𝑌‘2) ↔ (𝑌‘2) ≠ (𝑋‘2))
10434, 39, 1033imtr3i 292 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘2) ≠ (𝑋‘2))
105104adantr 481 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ≠ (𝑋‘2))
10686, 87, 105subne0d 10994 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
10791, 94, 88, 106mulcand 11261 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
108102, 107bitrd 280 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
10985, 97, 1083bitrd 306 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ (𝑝‘1) = (𝑌‘1)))
11083, 109bitrd 280 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑌‘1)))
111 simpl 483 . . . . . . . . 9 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋‘1) = (𝑌‘1))
112111eqcomd 2824 . . . . . . . 8 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘1) = (𝑋‘1))
113112adantr 481 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) = (𝑋‘1))
114113eqeq2d 2829 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑌‘1) ↔ (𝑝‘1) = (𝑋‘1)))
11570, 110, 1143bitrrd 307 . . . . 5 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
116115rabbidva 3476 . . . 4 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11739, 116sylbi 218 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11838, 117eqtrd 2853 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
1196, 35, 20, 36rrx2line 44655 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
120119adantr 481 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
121 df-ne 3014 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) ↔ ¬ (𝑋‘1) = (𝑌‘1))
12289ad2antlr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘1) ∈ ℝ)
1236, 20rrx2pxel 44626 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1241233ad2ant1 1125 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
125124ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
126483ad2ant2 1126 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
127126ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
128 simpr 485 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
12955ad2antlr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘2) ∈ ℝ)
130763ad2ant1 1125 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
131130ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
132713ad2ant2 1126 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
133132ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
134122, 125, 127, 128, 129, 131, 133affinecomb2 44618 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
13543eqcomi 2827 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 𝐴
136135oveq1i 7155 . . . . . . . . . . 11 (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (𝐴 · (𝑝‘2))
13760eqcomi 2827 . . . . . . . . . . . . 13 ((𝑌‘2) − (𝑋‘2)) = 𝐵
138137oveq1i 7155 . . . . . . . . . . . 12 (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐵 · (𝑝‘1))
13963eqcomi 2827 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝐶
140138, 139oveq12i 7157 . . . . . . . . . . 11 ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((𝐵 · (𝑝‘1)) + 𝐶)
141136, 140eqeq12i 2833 . . . . . . . . . 10 ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))
142134, 141syl6bb 288 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
143142expcom 414 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
144121, 143sylbir 236 . . . . . . 7 (¬ (𝑋‘1) = (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
145144expd 416 . . . . . 6 (¬ (𝑋‘1) = (𝑌‘1) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))))
146145impcom 408 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
147146imp 407 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
148147rabbidva 3476 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
149120, 148eqtrd 2853 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
150118, 149pm2.61dan 809 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  {cpr 4559   Fn wfn 6343  cfv 6348  (class class class)co 7145  m cmap 8395  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cmin 10858  -cneg 10859  2c2 11680  ℝ^crrx 23913  LineMcline 44642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-ghm 18294  df-cmn 18837  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-field 19434  df-subrg 19462  df-staf 19545  df-srng 19546  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-cnfld 20474  df-refld 20677  df-dsmm 20804  df-frlm 20819  df-tng 23121  df-tcph 23700  df-rrx 23915  df-line 44644
This theorem is referenced by:  rrx2linest2  44659  line2x  44669  itsclinecirc0b  44689
  Copyright terms: Public domain W3C validator