Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest Structured version   Visualization version   GIF version

Theorem rrx2linest 48591
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linest.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2linest.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
rrx2linest.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑋𝑃)
2 simpl2 1191 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑌𝑃)
3 simpr 484 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
4 simpr 484 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
54anim1i 615 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
6 rrx2line.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
76raleqi 3321 . . . . . . . . . . . . 13 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
8 1ex 11254 . . . . . . . . . . . . . 14 1 ∈ V
9 2ex 12340 . . . . . . . . . . . . . 14 2 ∈ V
10 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
11 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1210, 11eqeq12d 2750 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
13 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
14 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
1513, 14eqeq12d 2750 . . . . . . . . . . . . . 14 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
168, 9, 12, 15ralpr 4704 . . . . . . . . . . . . 13 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
177, 16bitri 275 . . . . . . . . . . . 12 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
185, 17sylibr 234 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
19 elmapfn 8903 . . . . . . . . . . . . . . 15 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
20 rrx2line.b . . . . . . . . . . . . . . 15 𝑃 = (ℝ ↑m 𝐼)
2119, 20eleq2s 2856 . . . . . . . . . . . . . 14 (𝑋𝑃𝑋 Fn 𝐼)
22 elmapfn 8903 . . . . . . . . . . . . . . 15 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
2322, 20eleq2s 2856 . . . . . . . . . . . . . 14 (𝑌𝑃𝑌 Fn 𝐼)
2421, 23anim12i 613 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2524ad2antrr 726 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
26 eqfnfv 7050 . . . . . . . . . . . 12 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2818, 27mpbird 257 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)
2928ex 412 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) = (𝑌‘2) → 𝑋 = 𝑌))
3029necon3d 2958 . . . . . . . 8 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2)))
3130ex 412 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) = (𝑌‘1) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2))))
3231com23 86 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2))))
33323impia 1116 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2)))
3433imp 406 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) ≠ (𝑌‘2))
35 rrx2line.e . . . . 5 𝐸 = (ℝ^‘𝐼)
36 rrx2line.l . . . . 5 𝐿 = (LineM𝐸)
376, 35, 20, 36rrx2vlinest 48590 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
381, 2, 3, 34, 37syl112anc 1373 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
39 ancom 460 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)))
40 simplr 769 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋𝑃𝑌𝑃𝑋𝑌))
41 simpr 484 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝𝑃)
42 simpll 767 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘1) = (𝑌‘1))
43 rrx2linest.a . . . . . . . . . . 11 𝐴 = ((𝑌‘1) − (𝑋‘1))
4443oveq1i 7440 . . . . . . . . . 10 (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))
4544a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)))
46 oveq2 7438 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
4746adantl 481 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
486, 20rrx2pxel 48560 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
4948recnd 11286 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
50493ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℂ)
5150ad2antrr 726 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑌‘1) ∈ ℂ)
5251subidd 11605 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑌‘1)) = 0)
5347, 52eqtrd 2774 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = 0)
5453oveq1d 7445 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (0 · (𝑝‘2)))
556, 20rrx2pyel 48561 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
5655recnd 11286 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
5756ad2antlr 727 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑝‘2) ∈ ℂ)
5857mul02d 11456 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (0 · (𝑝‘2)) = 0)
5945, 54, 583eqtrd 2778 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = 0)
60 rrx2linest.b . . . . . . . . . . 11 𝐵 = ((𝑌‘2) − (𝑋‘2))
6160oveq1i 7440 . . . . . . . . . 10 (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))
6261a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
63 rrx2linest.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
64 oveq1 7437 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) · (𝑌‘2)) = ((𝑌‘1) · (𝑌‘2)))
6564oveq2d 7446 . . . . . . . . . . 11 ((𝑋‘1) = (𝑌‘1) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6663, 65eqtrid 2786 . . . . . . . . . 10 ((𝑋‘1) = (𝑌‘1) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6766adantl 481 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6862, 67oveq12d 7448 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐵 · (𝑝‘1)) + 𝐶) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))))
6959, 68eqeq12d 2750 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
7040, 41, 42, 69syl21anc 838 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
716, 20rrx2pyel 48561 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
7271recnd 11286 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
73723ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℂ)
7450, 73mulcomd 11279 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) · (𝑌‘2)) = ((𝑌‘2) · (𝑌‘1)))
7574oveq2d 7446 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
766, 20rrx2pyel 48561 . . . . . . . . . . . . . 14 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
7776recnd 11286 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
78773ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℂ)
7978, 73, 50subdird 11717 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
8075, 79eqtr4d 2777 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8180ad2antlr 727 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8281oveq2d 7446 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
8382eqeq2d 2745 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))))
84 eqcom 2741 . . . . . . . . 9 (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0)
8584a1i 11 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0))
8673ad2antlr 727 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8778ad2antlr 727 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
8886, 87subcld 11617 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
896, 20rrx2pxel 48560 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
9089recnd 11286 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
9190adantl 481 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
9288, 91mulcld 11278 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
9387, 86subcld 11617 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℂ)
9450ad2antlr 727 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℂ)
9593, 94mulcld 11278 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ)
96 addeq0 11683 . . . . . . . . 9 (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ ∧ (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9792, 95, 96syl2anc 584 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9893, 94mulneg1d 11713 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
9987, 86negsubdi2d 11633 . . . . . . . . . . . 12 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -((𝑋‘2) − (𝑌‘2)) = ((𝑌‘2) − (𝑋‘2)))
10099oveq1d 7445 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
10198, 100eqtr3d 2776 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
102101eqeq2d 2745 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1))))
103 necom 2991 . . . . . . . . . . . . 13 ((𝑋‘2) ≠ (𝑌‘2) ↔ (𝑌‘2) ≠ (𝑋‘2))
10434, 39, 1033imtr3i 291 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘2) ≠ (𝑋‘2))
105104adantr 480 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ≠ (𝑋‘2))
10686, 87, 105subne0d 11626 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
10791, 94, 88, 106mulcand 11893 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
108102, 107bitrd 279 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
10985, 97, 1083bitrd 305 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ (𝑝‘1) = (𝑌‘1)))
11083, 109bitrd 279 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑌‘1)))
111 simpl 482 . . . . . . . . 9 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋‘1) = (𝑌‘1))
112111eqcomd 2740 . . . . . . . 8 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘1) = (𝑋‘1))
113112adantr 480 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) = (𝑋‘1))
114113eqeq2d 2745 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑌‘1) ↔ (𝑝‘1) = (𝑋‘1)))
11570, 110, 1143bitrrd 306 . . . . 5 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
116115rabbidva 3439 . . . 4 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11739, 116sylbi 217 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11838, 117eqtrd 2774 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
1196, 35, 20, 36rrx2line 48589 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
120119adantr 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
121 df-ne 2938 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) ↔ ¬ (𝑋‘1) = (𝑌‘1))
12289ad2antlr 727 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘1) ∈ ℝ)
1236, 20rrx2pxel 48560 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1241233ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
125124ad2antrr 726 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
126483ad2ant2 1133 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
127126ad2antrr 726 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
128 simpr 484 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
12955ad2antlr 727 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘2) ∈ ℝ)
130763ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
131130ad2antrr 726 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
132713ad2ant2 1133 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
133132ad2antrr 726 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
134122, 125, 127, 128, 129, 131, 133affinecomb2 48552 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
13543eqcomi 2743 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 𝐴
136135oveq1i 7440 . . . . . . . . . . 11 (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (𝐴 · (𝑝‘2))
13760eqcomi 2743 . . . . . . . . . . . . 13 ((𝑌‘2) − (𝑋‘2)) = 𝐵
138137oveq1i 7440 . . . . . . . . . . . 12 (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐵 · (𝑝‘1))
13963eqcomi 2743 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝐶
140138, 139oveq12i 7442 . . . . . . . . . . 11 ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((𝐵 · (𝑝‘1)) + 𝐶)
141136, 140eqeq12i 2752 . . . . . . . . . 10 ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))
142134, 141bitrdi 287 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
143142expcom 413 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
144121, 143sylbir 235 . . . . . . 7 (¬ (𝑋‘1) = (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
145144expd 415 . . . . . 6 (¬ (𝑋‘1) = (𝑌‘1) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))))
146145impcom 407 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
147146imp 406 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
148147rabbidva 3439 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
149120, 148eqtrd 2774 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
150118, 149pm2.61dan 813 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  {cpr 4632   Fn wfn 6557  cfv 6562  (class class class)co 7430  m cmap 8864  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  -cneg 11490  2c2 12318  ℝ^crrx 25430  LineMcline 48576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-ghm 19243  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-drng 20747  df-field 20748  df-staf 20856  df-srng 20857  df-lmod 20876  df-lss 20947  df-sra 21189  df-rgmod 21190  df-cnfld 21382  df-refld 21640  df-dsmm 21769  df-frlm 21784  df-tng 24612  df-tcph 25216  df-rrx 25432  df-line 48578
This theorem is referenced by:  rrx2linest2  48593  line2x  48603  itsclinecirc0b  48623
  Copyright terms: Public domain W3C validator