Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linest Structured version   Visualization version   GIF version

Theorem rrx2linest 46088
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linest.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2linest.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
rrx2linest.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
rrx2linest ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝐶(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linest
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑋𝑃)
2 simpl2 1191 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → 𝑌𝑃)
3 simpr 485 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
4 simpr 485 . . . . . . . . . . . . 13 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘1) = (𝑌‘1))
54anim1i 615 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
6 rrx2line.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
76raleqi 3346 . . . . . . . . . . . . 13 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
8 1ex 10971 . . . . . . . . . . . . . 14 1 ∈ V
9 2ex 12050 . . . . . . . . . . . . . 14 2 ∈ V
10 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
11 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
1210, 11eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
13 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
14 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
1513, 14eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
168, 9, 12, 15ralpr 4636 . . . . . . . . . . . . 13 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
177, 16bitri 274 . . . . . . . . . . . 12 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
185, 17sylibr 233 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
19 elmapfn 8653 . . . . . . . . . . . . . . 15 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
20 rrx2line.b . . . . . . . . . . . . . . 15 𝑃 = (ℝ ↑m 𝐼)
2119, 20eleq2s 2857 . . . . . . . . . . . . . 14 (𝑋𝑃𝑋 Fn 𝐼)
22 elmapfn 8653 . . . . . . . . . . . . . . 15 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
2322, 20eleq2s 2857 . . . . . . . . . . . . . 14 (𝑌𝑃𝑌 Fn 𝐼)
2421, 23anim12i 613 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2524ad2antrr 723 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
26 eqfnfv 6909 . . . . . . . . . . . 12 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2818, 27mpbird 256 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)
2928ex 413 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) = (𝑌‘2) → 𝑋 = 𝑌))
3029necon3d 2964 . . . . . . . 8 (((𝑋𝑃𝑌𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2)))
3130ex 413 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) = (𝑌‘1) → (𝑋𝑌 → (𝑋‘2) ≠ (𝑌‘2))))
3231com23 86 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2))))
33323impia 1116 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) = (𝑌‘1) → (𝑋‘2) ≠ (𝑌‘2)))
3433imp 407 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) ≠ (𝑌‘2))
35 rrx2line.e . . . . 5 𝐸 = (ℝ^‘𝐼)
36 rrx2line.l . . . . 5 𝐿 = (LineM𝐸)
376, 35, 20, 36rrx2vlinest 46087 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
381, 2, 3, 34, 37syl112anc 1373 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
39 ancom 461 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)))
40 simplr 766 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋𝑃𝑌𝑃𝑋𝑌))
41 simpr 485 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → 𝑝𝑃)
42 simpll 764 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘1) = (𝑌‘1))
43 rrx2linest.a . . . . . . . . . . 11 𝐴 = ((𝑌‘1) − (𝑋‘1))
4443oveq1i 7285 . . . . . . . . . 10 (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2))
4544a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)))
46 oveq2 7283 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
4746adantl 482 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑌‘1)))
486, 20rrx2pxel 46057 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
4948recnd 11003 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
50493ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℂ)
5150ad2antrr 723 . . . . . . . . . . . 12 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑌‘1) ∈ ℂ)
5251subidd 11320 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑌‘1)) = 0)
5347, 52eqtrd 2778 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑌‘1) − (𝑋‘1)) = 0)
5453oveq1d 7290 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (0 · (𝑝‘2)))
556, 20rrx2pyel 46058 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
5655recnd 11003 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
5756ad2antlr 724 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑝‘2) ∈ ℂ)
5857mul02d 11173 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (0 · (𝑝‘2)) = 0)
5945, 54, 583eqtrd 2782 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐴 · (𝑝‘2)) = 0)
60 rrx2linest.b . . . . . . . . . . 11 𝐵 = ((𝑌‘2) − (𝑋‘2))
6160oveq1i 7285 . . . . . . . . . 10 (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1))
6261a1i 11 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → (𝐵 · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)))
63 rrx2linest.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
64 oveq1 7282 . . . . . . . . . . . 12 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) · (𝑌‘2)) = ((𝑌‘1) · (𝑌‘2)))
6564oveq2d 7291 . . . . . . . . . . 11 ((𝑋‘1) = (𝑌‘1) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6663, 65eqtrid 2790 . . . . . . . . . 10 ((𝑋‘1) = (𝑌‘1) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6766adantl 482 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))
6862, 67oveq12d 7293 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐵 · (𝑝‘1)) + 𝐶) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))))
6959, 68eqeq12d 2754 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) = (𝑌‘1)) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
7040, 41, 42, 69syl21anc 835 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))))))
716, 20rrx2pyel 46058 . . . . . . . . . . . . . . 15 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
7271recnd 11003 . . . . . . . . . . . . . 14 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
73723ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℂ)
7450, 73mulcomd 10996 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑌‘1) · (𝑌‘2)) = ((𝑌‘2) · (𝑌‘1)))
7574oveq2d 7291 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
766, 20rrx2pyel 46058 . . . . . . . . . . . . . 14 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
7776recnd 11003 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
78773ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℂ)
7978, 73, 50subdird 11432 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘2) · (𝑌‘1))))
8075, 79eqtr4d 2781 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8180ad2antlr 724 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2))) = (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
8281oveq2d 7291 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
8382eqeq2d 2749 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ 0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))))
84 eqcom 2745 . . . . . . . . 9 (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0)
8584a1i 11 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0))
8673ad2antlr 724 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℂ)
8778ad2antlr 724 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℂ)
8886, 87subcld 11332 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ∈ ℂ)
896, 20rrx2pxel 46057 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
9089recnd 11003 . . . . . . . . . . 11 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
9190adantl 482 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
9288, 91mulcld 10995 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ)
9387, 86subcld 11332 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℂ)
9450ad2antlr 724 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℂ)
9593, 94mulcld 10995 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ)
96 addeq0 11398 . . . . . . . . 9 (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) ∈ ℂ ∧ (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ∈ ℂ) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9792, 95, 96syl2anc 584 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) = 0 ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))))
9893, 94mulneg1d 11428 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)))
9987, 86negsubdi2d 11348 . . . . . . . . . . . 12 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -((𝑋‘2) − (𝑌‘2)) = ((𝑌‘2) − (𝑋‘2)))
10099oveq1d 7290 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (-((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
10198, 100eqtr3d 2780 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)))
102101eqeq2d 2749 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1))))
103 necom 2997 . . . . . . . . . . . . 13 ((𝑋‘2) ≠ (𝑌‘2) ↔ (𝑌‘2) ≠ (𝑋‘2))
10434, 39, 1033imtr3i 291 . . . . . . . . . . . 12 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘2) ≠ (𝑋‘2))
105104adantr 481 . . . . . . . . . . 11 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘2) ≠ (𝑋‘2))
10686, 87, 105subne0d 11341 . . . . . . . . . 10 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑌‘2) − (𝑋‘2)) ≠ 0)
10791, 94, 88, 106mulcand 11608 . . . . . . . . 9 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (((𝑌‘2) − (𝑋‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
108102, 107bitrd 278 . . . . . . . 8 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = -(((𝑋‘2) − (𝑌‘2)) · (𝑌‘1)) ↔ (𝑝‘1) = (𝑌‘1)))
10985, 97, 1083bitrd 305 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) − (𝑌‘2)) · (𝑌‘1))) ↔ (𝑝‘1) = (𝑌‘1)))
11083, 109bitrd 278 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (0 = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑌‘1) · (𝑌‘2)))) ↔ (𝑝‘1) = (𝑌‘1)))
111 simpl 483 . . . . . . . . 9 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋‘1) = (𝑌‘1))
112111eqcomd 2744 . . . . . . . 8 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑌‘1) = (𝑋‘1))
113112adantr 481 . . . . . . 7 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → (𝑌‘1) = (𝑋‘1))
114113eqeq2d 2749 . . . . . 6 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑌‘1) ↔ (𝑝‘1) = (𝑋‘1)))
11570, 110, 1143bitrrd 306 . . . . 5 ((((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑝𝑃) → ((𝑝‘1) = (𝑋‘1) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
116115rabbidva 3413 . . . 4 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11739, 116sylbi 216 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
11838, 117eqtrd 2778 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
1196, 35, 20, 36rrx2line 46086 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
120119adantr 481 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
121 df-ne 2944 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) ↔ ¬ (𝑋‘1) = (𝑌‘1))
12289ad2antlr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘1) ∈ ℝ)
1236, 20rrx2pxel 46057 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1241233ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
125124ad2antrr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
126483ad2ant2 1133 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
127126ad2antrr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
128 simpr 485 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
12955ad2antlr 724 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑝‘2) ∈ ℝ)
130763ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
131130ad2antrr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
132713ad2ant2 1133 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
133132ad2antrr 723 . . . . . . . . . . 11 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
134122, 125, 127, 128, 129, 131, 133affinecomb2 46049 . . . . . . . . . 10 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))))
13543eqcomi 2747 . . . . . . . . . . . 12 ((𝑌‘1) − (𝑋‘1)) = 𝐴
136135oveq1i 7285 . . . . . . . . . . 11 (((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = (𝐴 · (𝑝‘2))
13760eqcomi 2747 . . . . . . . . . . . . 13 ((𝑌‘2) − (𝑋‘2)) = 𝐵
138137oveq1i 7285 . . . . . . . . . . . 12 (((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) = (𝐵 · (𝑝‘1))
13963eqcomi 2747 . . . . . . . . . . . 12 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = 𝐶
140138, 139oveq12i 7287 . . . . . . . . . . 11 ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) = ((𝐵 · (𝑝‘1)) + 𝐶)
141136, 140eqeq12i 2756 . . . . . . . . . 10 ((((𝑌‘1) − (𝑋‘1)) · (𝑝‘2)) = ((((𝑌‘2) − (𝑋‘2)) · (𝑝‘1)) + (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))
142134, 141bitrdi 287 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) ∧ (𝑋‘1) ≠ (𝑌‘1)) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
143142expcom 414 . . . . . . . 8 ((𝑋‘1) ≠ (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
144121, 143sylbir 234 . . . . . . 7 (¬ (𝑋‘1) = (𝑌‘1) → (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
145144expd 416 . . . . . 6 (¬ (𝑋‘1) = (𝑌‘1) → ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))))
146145impcom 408 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑝𝑃 → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶))))
147146imp 407 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)))
148147rabbidva 3413 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
149120, 148eqtrd 2778 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ ¬ (𝑋‘1) = (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
150118, 149pm2.61dan 810 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝐴 · (𝑝‘2)) = ((𝐵 · (𝑝‘1)) + 𝐶)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  {cpr 4563   Fn wfn 6428  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  2c2 12028  ℝ^crrx 24547  LineMcline 46073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-refld 20810  df-dsmm 20939  df-frlm 20954  df-tng 23740  df-tcph 24333  df-rrx 24549  df-line 46075
This theorem is referenced by:  rrx2linest2  46090  line2x  46100  itsclinecirc0b  46120
  Copyright terms: Public domain W3C validator