![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt0f | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt0f | ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt0f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmpt0f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
4 | 1, 3 | ralrimi 3250 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
5 | dmmptg 6241 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
7 | 6 | eqcomd 2734 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | 7 | eqeq1d 2730 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ↔ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
9 | dm0rn0 5922 | . . 3 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
11 | rnmpt0f.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
12 | 11 | rneqi 5934 | . . . . 5 ⊢ ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
14 | 13 | eqcomd 2734 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran 𝐹) |
15 | 14 | eqeq1d 2730 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran 𝐹 = ∅)) |
16 | 8, 10, 15 | 3bitrrd 306 | 1 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3057 ∅c0 4319 ↦ cmpt 5226 dom cdm 5673 ran crn 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-mpt 5227 df-xp 5679 df-rel 5680 df-cnv 5681 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 |
This theorem is referenced by: rnmptn0 6243 |
Copyright terms: Public domain | W3C validator |