MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpt0f Structured version   Visualization version   GIF version

Theorem rnmpt0f 6135
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmpt0f (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmpt0f
StepHypRef Expression
1 rnmpt0f.1 . . . . . 6 𝑥𝜑
2 rnmpt0f.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3139 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 dmmptg 6134 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
64, 5syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
76eqcomd 2744 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
87eqeq1d 2740 . 2 (𝜑 → (𝐴 = ∅ ↔ dom (𝑥𝐴𝐵) = ∅))
9 dm0rn0 5823 . . 3 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
109a1i 11 . 2 (𝜑 → (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅))
11 rnmpt0f.3 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
1211rneqi 5835 . . . . 5 ran 𝐹 = ran (𝑥𝐴𝐵)
1312a1i 11 . . . 4 (𝜑 → ran 𝐹 = ran (𝑥𝐴𝐵))
1413eqcomd 2744 . . 3 (𝜑 → ran (𝑥𝐴𝐵) = ran 𝐹)
1514eqeq1d 2740 . 2 (𝜑 → (ran (𝑥𝐴𝐵) = ∅ ↔ ran 𝐹 = ∅))
168, 10, 153bitrrd 305 1 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  c0 4253  cmpt 5153  dom cdm 5580  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  rnmptn0  6136
  Copyright terms: Public domain W3C validator