| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt0f | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt0f | ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt0f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmpt0f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
| 4 | 1, 3 | ralrimi 3227 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
| 5 | dmmptg 6191 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 7 | 6 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 8 | 7 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ↔ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
| 9 | dm0rn0 5867 | . . 3 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
| 11 | rnmpt0f.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 12 | 11 | rneqi 5879 | . . . . 5 ⊢ ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 14 | 13 | eqcomd 2735 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran 𝐹) |
| 15 | 14 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran 𝐹 = ∅)) |
| 16 | 8, 10, 15 | 3bitrrd 306 | 1 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∅c0 4284 ↦ cmpt 5173 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: rnmptn0 6193 |
| Copyright terms: Public domain | W3C validator |