Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmpt0f | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt0f | ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt0f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmpt0f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 2 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
4 | 1, 3 | ralrimi 3141 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
5 | dmmptg 6145 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
7 | 6 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | 7 | eqeq1d 2740 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ↔ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
9 | dm0rn0 5834 | . . 3 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
11 | rnmpt0f.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
12 | 11 | rneqi 5846 | . . . . 5 ⊢ ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
14 | 13 | eqcomd 2744 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran 𝐹) |
15 | 14 | eqeq1d 2740 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran 𝐹 = ∅)) |
16 | 8, 10, 15 | 3bitrrd 306 | 1 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∅c0 4256 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: rnmptn0 6147 |
Copyright terms: Public domain | W3C validator |