MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpt0f Structured version   Visualization version   GIF version

Theorem rnmpt0f 6242
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmpt0f (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmpt0f
StepHypRef Expression
1 rnmpt0f.1 . . . . . 6 𝑥𝜑
2 rnmpt0f.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 413 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3254 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 dmmptg 6241 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
64, 5syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
76eqcomd 2738 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
87eqeq1d 2734 . 2 (𝜑 → (𝐴 = ∅ ↔ dom (𝑥𝐴𝐵) = ∅))
9 dm0rn0 5924 . . 3 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
109a1i 11 . 2 (𝜑 → (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅))
11 rnmpt0f.3 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
1211rneqi 5936 . . . . 5 ran 𝐹 = ran (𝑥𝐴𝐵)
1312a1i 11 . . . 4 (𝜑 → ran 𝐹 = ran (𝑥𝐴𝐵))
1413eqcomd 2738 . . 3 (𝜑 → ran (𝑥𝐴𝐵) = ran 𝐹)
1514eqeq1d 2734 . 2 (𝜑 → (ran (𝑥𝐴𝐵) = ∅ ↔ ran 𝐹 = ∅))
168, 10, 153bitrrd 305 1 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3061  c0 4322  cmpt 5231  dom cdm 5676  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  rnmptn0  6243
  Copyright terms: Public domain W3C validator