| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt0f | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt0f | ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt0f.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmpt0f.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
| 4 | 1, 3 | ralrimi 3230 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
| 5 | dmmptg 6184 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 7 | 6 | eqcomd 2737 | . . 3 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 8 | 7 | eqeq1d 2733 | . 2 ⊢ (𝜑 → (𝐴 = ∅ ↔ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
| 9 | dm0rn0 5859 | . . 3 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅)) |
| 11 | rnmpt0f.3 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 12 | 11 | rneqi 5872 | . . . . 5 ⊢ ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 14 | 13 | eqcomd 2737 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran 𝐹) |
| 15 | 14 | eqeq1d 2733 | . 2 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∅ ↔ ran 𝐹 = ∅)) |
| 16 | 8, 10, 15 | 3bitrrd 306 | 1 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: rnmptn0 6186 |
| Copyright terms: Public domain | W3C validator |