MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpt0f Structured version   Visualization version   GIF version

Theorem rnmpt0f 6192
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmpt0f (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmpt0f
StepHypRef Expression
1 rnmpt0f.1 . . . . . 6 𝑥𝜑
2 rnmpt0f.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3227 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 dmmptg 6191 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
64, 5syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
76eqcomd 2735 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
87eqeq1d 2731 . 2 (𝜑 → (𝐴 = ∅ ↔ dom (𝑥𝐴𝐵) = ∅))
9 dm0rn0 5867 . . 3 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
109a1i 11 . 2 (𝜑 → (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅))
11 rnmpt0f.3 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
1211rneqi 5879 . . . . 5 ran 𝐹 = ran (𝑥𝐴𝐵)
1312a1i 11 . . . 4 (𝜑 → ran 𝐹 = ran (𝑥𝐴𝐵))
1413eqcomd 2735 . . 3 (𝜑 → ran (𝑥𝐴𝐵) = ran 𝐹)
1514eqeq1d 2731 . 2 (𝜑 → (ran (𝑥𝐴𝐵) = ∅ ↔ ran 𝐹 = ∅))
168, 10, 153bitrrd 306 1 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  c0 4284  cmpt 5173  dom cdm 5619  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  rnmptn0  6193
  Copyright terms: Public domain W3C validator