MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcoteq1a Structured version   Visualization version   GIF version

Theorem sbcoteq1a 8056
Description: Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
sbcoteq1a (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))

Proof of Theorem sbcoteq1a
StepHypRef Expression
1 fveq2 6896 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦, 𝑧⟩))
2 ot3rdg 8010 . . . . 5 (𝑧 ∈ V → (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧)
32elv 3467 . . . 4 (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧
41, 3eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑧 = (2nd𝐴))
5 sbceq1a 3784 . . 3 (𝑧 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑧]𝜑))
64, 5syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (𝜑[(2nd𝐴) / 𝑧]𝜑))
7 2fveq3 6901 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
8 vex 3465 . . . . 5 𝑥 ∈ V
9 vex 3465 . . . . 5 𝑦 ∈ V
10 vex 3465 . . . . 5 𝑧 ∈ V
11 ot2ndg 8009 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦)
128, 9, 10, 11mp3an 1457 . . . 4 (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦
137, 12eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
14 sbceq1a 3784 . . 3 (𝑦 = (2nd ‘(1st𝐴)) → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
1513, 14syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
16 2fveq3 6901 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
17 ot1stg 8008 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥)
188, 9, 10, 17mp3an 1457 . . . 4 (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥
1916, 18eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
20 sbceq1a 3784 . . 3 (𝑥 = (1st ‘(1st𝐴)) → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
2119, 20syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
226, 15, 213bitrrd 305 1 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3461  [wsbc 3773  cotp 4638  cfv 6549  1st c1st 7992  2nd c2nd 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fv 6557  df-1st 7994  df-2nd 7995
This theorem is referenced by:  ralxp3es  8144  frpoins3xp3g  8146
  Copyright terms: Public domain W3C validator