MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcoteq1a Structured version   Visualization version   GIF version

Theorem sbcoteq1a 8033
Description: Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
sbcoteq1a (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))

Proof of Theorem sbcoteq1a
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦, 𝑧⟩))
2 ot3rdg 7987 . . . . 5 (𝑧 ∈ V → (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧)
32elv 3455 . . . 4 (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧
41, 3eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑧 = (2nd𝐴))
5 sbceq1a 3767 . . 3 (𝑧 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑧]𝜑))
64, 5syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (𝜑[(2nd𝐴) / 𝑧]𝜑))
7 2fveq3 6866 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
8 vex 3454 . . . . 5 𝑥 ∈ V
9 vex 3454 . . . . 5 𝑦 ∈ V
10 vex 3454 . . . . 5 𝑧 ∈ V
11 ot2ndg 7986 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦)
128, 9, 10, 11mp3an 1463 . . . 4 (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦
137, 12eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
14 sbceq1a 3767 . . 3 (𝑦 = (2nd ‘(1st𝐴)) → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
1513, 14syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
16 2fveq3 6866 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
17 ot1stg 7985 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥)
188, 9, 10, 17mp3an 1463 . . . 4 (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥
1916, 18eqtr2di 2782 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
20 sbceq1a 3767 . . 3 (𝑥 = (1st ‘(1st𝐴)) → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
2119, 20syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
226, 15, 213bitrrd 306 1 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  [wsbc 3756  cotp 4600  cfv 6514  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972
This theorem is referenced by:  ralxp3es  8121  frpoins3xp3g  8123
  Copyright terms: Public domain W3C validator