Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoteq1a Structured version   Visualization version   GIF version

Theorem sbcoteq1a 33590
Description: Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
sbcoteq1a (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))

Proof of Theorem sbcoteq1a
StepHypRef Expression
1 opex 5373 . . . . 5 𝑥, 𝑦⟩ ∈ V
2 vex 3426 . . . . 5 𝑧 ∈ V
31, 2op2ndd 7815 . . . 4 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd𝐴) = 𝑧)
43eqcomd 2744 . . 3 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑧 = (2nd𝐴))
5 sbceq1a 3722 . . 3 (𝑧 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑧]𝜑))
64, 5syl 17 . 2 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑[(2nd𝐴) / 𝑧]𝜑))
7 vex 3426 . . . . 5 𝑥 ∈ V
8 vex 3426 . . . . 5 𝑦 ∈ V
97, 8, 2ot22ndd 33584 . . . 4 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd ‘(1st𝐴)) = 𝑦)
109eqcomd 2744 . . 3 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
11 sbceq1a 3722 . . 3 (𝑦 = (2nd ‘(1st𝐴)) → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
1210, 11syl 17 . 2 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
137, 8, 2ot21std 33583 . . . 4 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st ‘(1st𝐴)) = 𝑥)
1413eqcomd 2744 . . 3 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
15 sbceq1a 3722 . . 3 (𝑥 = (1st ‘(1st𝐴)) → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
1614, 15syl 17 . 2 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
176, 12, 163bitrrd 305 1 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsbc 3711  cop 4564  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  ralxp3es  33591  frpoins3xp3g  33715
  Copyright terms: Public domain W3C validator