MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcoteq1a Structured version   Visualization version   GIF version

Theorem sbcoteq1a 7991
Description: Equality theorem for substitution of a class for an ordered triple. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
sbcoteq1a (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))

Proof of Theorem sbcoteq1a
StepHypRef Expression
1 fveq2 6830 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦, 𝑧⟩))
2 ot3rdg 7945 . . . . 5 (𝑧 ∈ V → (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧)
32elv 3442 . . . 4 (2nd ‘⟨𝑥, 𝑦, 𝑧⟩) = 𝑧
41, 3eqtr2di 2785 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑧 = (2nd𝐴))
5 sbceq1a 3748 . . 3 (𝑧 = (2nd𝐴) → (𝜑[(2nd𝐴) / 𝑧]𝜑))
64, 5syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (𝜑[(2nd𝐴) / 𝑧]𝜑))
7 2fveq3 6835 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
8 vex 3441 . . . . 5 𝑥 ∈ V
9 vex 3441 . . . . 5 𝑦 ∈ V
10 vex 3441 . . . . 5 𝑧 ∈ V
11 ot2ndg 7944 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦)
128, 9, 10, 11mp3an 1463 . . . 4 (2nd ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑦
137, 12eqtr2di 2785 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
14 sbceq1a 3748 . . 3 (𝑦 = (2nd ‘(1st𝐴)) → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
1513, 14syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd𝐴) / 𝑧]𝜑[(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
16 2fveq3 6835 . . . 4 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)))
17 ot1stg 7943 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥)
188, 9, 10, 17mp3an 1463 . . . 4 (1st ‘(1st ‘⟨𝑥, 𝑦, 𝑧⟩)) = 𝑥
1916, 18eqtr2di 2785 . . 3 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
20 sbceq1a 3748 . . 3 (𝑥 = (1st ‘(1st𝐴)) → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
2119, 20syl 17 . 2 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑[(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑))
226, 15, 213bitrrd 306 1 (𝐴 = ⟨𝑥, 𝑦, 𝑧⟩ → ([(1st ‘(1st𝐴)) / 𝑥][(2nd ‘(1st𝐴)) / 𝑦][(2nd𝐴) / 𝑧]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  [wsbc 3737  cotp 4585  cfv 6488  1st c1st 7927  2nd c2nd 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fv 6496  df-1st 7929  df-2nd 7930
This theorem is referenced by:  ralxp3es  8077  frpoins3xp3g  8079
  Copyright terms: Public domain W3C validator