MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest2 Structured version   Visualization version   GIF version

Theorem cnrest2 23180
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnrest2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))

Proof of Theorem cnrest2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 23134 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21a1i 11 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top))
3 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2730 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 23140 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
65ffnd 6692 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽)
76a1i 11 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽))
8 simp2 1137 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ran 𝐹𝐵)
97, 8jctird 526 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵)))
10 df-f 6518 . . . 4 (𝐹: 𝐽𝐵 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵))
119, 10imbitrrdi 252 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝐵))
122, 11jcad 512 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
13 cntop1 23134 . . . . 5 (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 481 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 toptopon2 22812 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1614, 15sylib 218 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
17 resttopon 23055 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
18173adant2 1131 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
1918adantr 480 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
20 simpr 484 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))
21 cnf2 23143 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2216, 19, 20, 21syl3anc 1373 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2314, 22jca 511 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵))
2423ex 412 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
25 vex 3454 . . . . . . . . 9 𝑥 ∈ V
2625inex1 5275 . . . . . . . 8 (𝑥𝐵) ∈ V
2726a1i 11 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
28 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
29 toponmax 22820 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
3028, 29syl 17 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝑌𝐾)
31 simpl3 1194 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵𝑌)
3230, 31ssexd 5282 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵 ∈ V)
33 elrest 17397 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
3428, 32, 33syl2anc 584 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
35 imaeq2 6030 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐹𝑦) = (𝐹 “ (𝑥𝐵)))
3635eleq1d 2814 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3736adantl 481 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑦 = (𝑥𝐵)) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3827, 34, 37ralxfr2d 5368 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
39 simplrr 777 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → 𝐹: 𝐽𝐵)
40 ffun 6694 . . . . . . . . . 10 (𝐹: 𝐽𝐵 → Fun 𝐹)
41 inpreima 7039 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
4239, 40, 413syl 18 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
43 cnvimass 6056 . . . . . . . . . . . 12 (𝐹𝑥) ⊆ dom 𝐹
44 cnvimarndm 6057 . . . . . . . . . . . 12 (𝐹 “ ran 𝐹) = dom 𝐹
4543, 44sseqtrri 3999 . . . . . . . . . . 11 (𝐹𝑥) ⊆ (𝐹 “ ran 𝐹)
46 simpll2 1214 . . . . . . . . . . . 12 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ran 𝐹𝐵)
47 imass2 6076 . . . . . . . . . . . 12 (ran 𝐹𝐵 → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4846, 47syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4945, 48sstrid 3961 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ (𝐹𝐵))
50 dfss2 3935 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝐵) ↔ ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5149, 50sylib 218 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5242, 51eqtrd 2765 . . . . . . . 8 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = (𝐹𝑥))
5352eleq1d 2814 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
5453ralbidva 3155 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
55 simprr 772 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝐵)
5655, 31fssd 6708 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝑌)
5756biantrurd 532 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
5838, 54, 573bitrrd 306 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽))
5955biantrurd 532 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6058, 59bitrd 279 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
61 simprl 770 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ Top)
6261, 15sylib 218 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ (TopOn‘ 𝐽))
63 iscn 23129 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6462, 28, 63syl2anc 584 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6518adantr 480 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
66 iscn 23129 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6762, 65, 66syl2anc 584 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6860, 64, 673bitr4d 311 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
6968ex 412 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))))
7012, 24, 69pm5.21ndd 379 1 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917   cuni 4874  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-map 8804  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121
This theorem is referenced by:  cnrest2r  23181  rncmp  23290  connima  23319  conncn  23320  kgencn2  23451  kgencn3  23452  qtoprest  23611  hmeores  23665  efmndtmd  23995  submtmd  23998  subgtgp  23999  symgtgp  24000  metdcn2  24735  metdscn2  24753  cnmptre  24828  iimulcn  24841  iimulcnOLD  24842  icchmeo  24845  icchmeoOLD  24846  evth  24865  evth2  24866  lebnumlem2  24868  reparphti  24903  reparphtiOLD  24904  efrlim  26886  efrlimOLD  26887  rmulccn  33925  raddcn  33926  xrge0mulc1cn  33938  cvxpconn  35236  cvxsconn  35237  cvmliftmolem1  35275  cvmliftlem8  35286  cvmlift2lem9  35305  cvmlift3lem6  35318  ivthALT  36330  knoppcnlem10  36497  broucube  37655  areacirclem2  37710  cnres2  37764  cnresima  37765  refsumcn  45031  icccncfext  45892
  Copyright terms: Public domain W3C validator