| Step | Hyp | Ref
| Expression |
| 1 | | cntop1 23248 |
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)) |
| 3 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 4 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 5 | 3, 4 | cnf 23254 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 6 | 5 | ffnd 6737 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn ∪ 𝐽) |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn ∪ 𝐽)) |
| 8 | | simp2 1138 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → ran 𝐹 ⊆ 𝐵) |
| 9 | 7, 8 | jctird 526 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵))) |
| 10 | | df-f 6565 |
. . . 4
⊢ (𝐹:∪
𝐽⟶𝐵 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵)) |
| 11 | 9, 10 | imbitrrdi 252 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝐵)) |
| 12 | 2, 11 | jcad 512 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵))) |
| 13 | | cntop1 23248 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) |
| 14 | 13 | adantl 481 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
| 15 | | toptopon2 22924 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 16 | 14, 15 | sylib 218 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 17 | | resttopon 23169 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 18 | 17 | 3adant2 1132 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 19 | 18 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 20 | | simpr 484 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) |
| 21 | | cnf2 23257 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t 𝐵)
∈ (TopOn‘𝐵)
∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹:∪ 𝐽⟶𝐵) |
| 22 | 16, 19, 20, 21 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹:∪ 𝐽⟶𝐵) |
| 23 | 14, 22 | jca 511 |
. . 3
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) |
| 24 | 23 | ex 412 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵))) |
| 25 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 26 | 25 | inex1 5317 |
. . . . . . . 8
⊢ (𝑥 ∩ 𝐵) ∈ V |
| 27 | 26 | a1i 11 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (𝑥 ∩ 𝐵) ∈ V) |
| 28 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 29 | | toponmax 22932 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝑌 ∈ 𝐾) |
| 31 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐵 ⊆ 𝑌) |
| 32 | 30, 31 | ssexd 5324 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐵 ∈ V) |
| 33 | | elrest 17472 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑦 = (𝑥 ∩ 𝐵))) |
| 34 | 28, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝑦 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑦 = (𝑥 ∩ 𝐵))) |
| 35 | | imaeq2 6074 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝑥 ∩ 𝐵))) |
| 36 | 35 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
| 37 | 36 | adantl 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑦 = (𝑥 ∩ 𝐵)) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
| 38 | 27, 34, 37 | ralxfr2d 5410 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
| 39 | | simplrr 778 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → 𝐹:∪ 𝐽⟶𝐵) |
| 40 | | ffun 6739 |
. . . . . . . . . 10
⊢ (𝐹:∪
𝐽⟶𝐵 → Fun 𝐹) |
| 41 | | inpreima 7084 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑥 ∩ 𝐵)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵))) |
| 42 | 39, 40, 41 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑥 ∩ 𝐵)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵))) |
| 43 | | cnvimass 6100 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 44 | | cnvimarndm 6101 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
| 45 | 43, 44 | sseqtrri 4033 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ ran 𝐹) |
| 46 | | simpll2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ran 𝐹 ⊆ 𝐵) |
| 47 | | imass2 6120 |
. . . . . . . . . . . 12
⊢ (ran
𝐹 ⊆ 𝐵 → (◡𝐹 “ ran 𝐹) ⊆ (◡𝐹 “ 𝐵)) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ ran 𝐹) ⊆ (◡𝐹 “ 𝐵)) |
| 49 | 45, 48 | sstrid 3995 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝐵)) |
| 50 | | dfss2 3969 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝑥)) |
| 51 | 49, 50 | sylib 218 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝑥)) |
| 52 | 42, 51 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑥 ∩ 𝐵)) = (◡𝐹 “ 𝑥)) |
| 53 | 52 | eleq1d 2826 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽 ↔ (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 54 | 53 | ralbidva 3176 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 55 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐹:∪ 𝐽⟶𝐵) |
| 56 | 55, 31 | fssd 6753 |
. . . . . . 7
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐹:∪ 𝐽⟶𝑌) |
| 57 | 56 | biantrurd 532 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 58 | 38, 54, 57 | 3bitrrd 306 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → ((𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 59 | 55 | biantrurd 532 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 60 | 58, 59 | bitrd 279 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → ((𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 61 | | simprl 771 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐽 ∈ Top) |
| 62 | 61, 15 | sylib 218 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 63 | | iscn 23243 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘𝑌)) →
(𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 64 | 62, 28, 63 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 65 | 18 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
| 66 | | iscn 23243 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t 𝐵)
∈ (TopOn‘𝐵))
→ (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 67 | 62, 65, 66 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 68 | 60, 64, 67 | 3bitr4d 311 |
. . 3
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |
| 69 | 68 | ex 412 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))))) |
| 70 | 12, 24, 69 | pm5.21ndd 379 |
1
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |