MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest2 Structured version   Visualization version   GIF version

Theorem cnrest2 21893
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnrest2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))

Proof of Theorem cnrest2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 21847 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21a1i 11 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top))
3 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2821 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 21853 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
65ffnd 6514 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽)
76a1i 11 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽))
8 simp2 1133 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ran 𝐹𝐵)
97, 8jctird 529 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵)))
10 df-f 6358 . . . 4 (𝐹: 𝐽𝐵 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵))
119, 10syl6ibr 254 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝐵))
122, 11jcad 515 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
13 cntop1 21847 . . . . 5 (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 484 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 toptopon2 21525 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1614, 15sylib 220 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
17 resttopon 21768 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
18173adant2 1127 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
1918adantr 483 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
20 simpr 487 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))
21 cnf2 21856 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2216, 19, 20, 21syl3anc 1367 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2314, 22jca 514 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵))
2423ex 415 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
25 vex 3497 . . . . . . . . 9 𝑥 ∈ V
2625inex1 5220 . . . . . . . 8 (𝑥𝐵) ∈ V
2726a1i 11 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
28 simpl1 1187 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
29 toponmax 21533 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
3028, 29syl 17 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝑌𝐾)
31 simpl3 1189 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵𝑌)
3230, 31ssexd 5227 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵 ∈ V)
33 elrest 16700 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
3428, 32, 33syl2anc 586 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
35 imaeq2 5924 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐹𝑦) = (𝐹 “ (𝑥𝐵)))
3635eleq1d 2897 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3736adantl 484 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑦 = (𝑥𝐵)) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3827, 34, 37ralxfr2d 5310 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
39 simplrr 776 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → 𝐹: 𝐽𝐵)
40 ffun 6516 . . . . . . . . . 10 (𝐹: 𝐽𝐵 → Fun 𝐹)
41 inpreima 6833 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
4239, 40, 413syl 18 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
43 cnvimass 5948 . . . . . . . . . . . 12 (𝐹𝑥) ⊆ dom 𝐹
44 cnvimarndm 5949 . . . . . . . . . . . 12 (𝐹 “ ran 𝐹) = dom 𝐹
4543, 44sseqtrri 4003 . . . . . . . . . . 11 (𝐹𝑥) ⊆ (𝐹 “ ran 𝐹)
46 simpll2 1209 . . . . . . . . . . . 12 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ran 𝐹𝐵)
47 imass2 5964 . . . . . . . . . . . 12 (ran 𝐹𝐵 → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4846, 47syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4945, 48sstrid 3977 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ (𝐹𝐵))
50 df-ss 3951 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝐵) ↔ ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5149, 50sylib 220 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5242, 51eqtrd 2856 . . . . . . . 8 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = (𝐹𝑥))
5352eleq1d 2897 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
5453ralbidva 3196 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
55 simprr 771 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝐵)
5655, 31fssd 6527 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝑌)
5756biantrurd 535 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
5838, 54, 573bitrrd 308 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽))
5955biantrurd 535 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6058, 59bitrd 281 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
61 simprl 769 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ Top)
6261, 15sylib 220 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ (TopOn‘ 𝐽))
63 iscn 21842 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6462, 28, 63syl2anc 586 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6518adantr 483 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
66 iscn 21842 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6762, 65, 66syl2anc 586 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6860, 64, 673bitr4d 313 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
6968ex 415 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))))
7012, 24, 69pm5.21ndd 383 1 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cin 3934  wss 3935   cuni 4837  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557  Fun wfun 6348   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  t crest 16693  Topctop 21500  TopOnctopon 21517   Cn ccn 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-fin 8512  df-fi 8874  df-rest 16695  df-topgen 16716  df-top 21501  df-topon 21518  df-bases 21553  df-cn 21834
This theorem is referenced by:  cnrest2r  21894  rncmp  22003  connima  22032  conncn  22033  kgencn2  22164  kgencn3  22165  qtoprest  22324  hmeores  22378  efmndtmd  22708  submtmd  22711  subgtgp  22712  symgtgp  22713  metdcn2  23446  metdscn2  23464  cnmptre  23530  iimulcn  23541  icchmeo  23544  evth  23562  evth2  23563  lebnumlem2  23565  reparphti  23600  efrlim  25546  rmulccn  31171  raddcn  31172  xrge0mulc1cn  31184  cvxpconn  32489  cvxsconn  32490  cvmliftmolem1  32528  cvmliftlem8  32539  cvmlift2lem9  32558  cvmlift3lem6  32571  ivthALT  33683  knoppcnlem10  33841  broucube  34925  areacirclem2  34982  cnres2  35040  cnresima  35041  refsumcn  41285  icccncfext  42168
  Copyright terms: Public domain W3C validator