MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulg Structured version   Visualization version   GIF version

Theorem odmulg 19574
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulg ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))

Proof of Theorem odmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odmulgid.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odmulgid.3 . . . . . . . . 9 · = (.g𝐺)
31, 2mulgcl 19109 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
433com23 1127 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
5 odmulgid.2 . . . . . . . 8 𝑂 = (od‘𝐺)
61, 5odcl 19554 . . . . . . 7 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
74, 6syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
87nn0cnd 12589 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
98adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
109mul02d 11459 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (0 · (𝑂‘(𝑁 · 𝐴))) = 0)
11 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑁 gcd (𝑂𝐴)) = 0)
1211oveq1d 7446 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) = (0 · (𝑂‘(𝑁 · 𝐴))))
13 simp3 1139 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
141, 5odcl 19554 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
15143ad2ant2 1135 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
1615nn0zd 12639 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
17 gcdeq0 16554 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1813, 16, 17syl2anc 584 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1918simplbda 499 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = 0)
2010, 12, 193eqtr4rd 2788 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
21 simpll3 1215 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
2216ad2antrr 726 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂𝐴) ∈ ℤ)
23 gcddvds 16540 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2421, 22, 23syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2524simprd 495 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴))
2613, 16gcdcld 16545 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2726adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2827nn0zd 12639 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
2928adantr 480 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
30 nn0z 12638 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3130adantl 481 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
32 dvdstr 16331 . . . . . . 7 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3329, 22, 31, 32syl3anc 1373 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3425, 33mpand 695 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
357nn0zd 12639 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
3635ad2antrr 726 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
37 muldvds1 16318 . . . . . 6 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3829, 36, 31, 37syl3anc 1373 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
39 dvdszrcl 16295 . . . . . . . . 9 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ))
40 divides 16292 . . . . . . . . 9 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4139, 40syl 17 . . . . . . . 8 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4241ibi 267 . . . . . . 7 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥)
4335adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
44 simprr 773 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
4528adantrr 717 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
46 simprl 771 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ≠ 0)
47 dvdscmulr 16322 . . . . . . . . . . . . 13 (((𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
4843, 44, 45, 46, 47syl112anc 1376 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
491, 5, 2odmulgid 19572 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
5049adantrl 716 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
51 simpl3 1194 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
52 dvdsmulgcd 16593 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5344, 51, 52syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5448, 50, 533bitrrd 306 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦)))
5545zcnd 12723 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
5644zcnd 12723 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
5755, 56mulcomd 11282 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝑦) = (𝑦 · (𝑁 gcd (𝑂𝐴))))
5857breq2d 5155 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5954, 58bitrd 279 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
6059anassrs 467 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
61 breq2 5147 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ (𝑂𝐴) ∥ 𝑥))
62 breq2 5147 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6361, 62bibi12d 345 . . . . . . . . 9 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))) ↔ ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6460, 63syl5ibcom 245 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6564rexlimdva 3155 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6642, 65syl5 34 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6766adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6834, 38, 67pm5.21ndd 379 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6968ralrimiva 3146 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
7015adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) ∈ ℕ0)
717adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
7227, 71nn0mulcld 12592 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0)
73 dvdsext 16358 . . . 4 (((𝑂𝐴) ∈ ℕ0 ∧ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7470, 72, 73syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7569, 74mpbird 257 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
7620, 75pm2.61dane 3029 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   · cmul 11160  0cn0 12526  cz 12613  cdvds 16290   gcd cgcd 16531  Basecbs 17247  Grpcgrp 18951  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-od 19546
This theorem is referenced by:  odmulgeq  19575  odinv  19579  gexexlem  19870  fincygsubgodd  20132  unitscyglem2  42197  unitscyglem4  42199
  Copyright terms: Public domain W3C validator