MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulg Structured version   Visualization version   GIF version

Theorem odmulg 19470
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulg ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))

Proof of Theorem odmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odmulgid.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odmulgid.3 . . . . . . . . 9 · = (.g𝐺)
31, 2mulgcl 19006 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
433com23 1126 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
5 odmulgid.2 . . . . . . . 8 𝑂 = (od‘𝐺)
61, 5odcl 19450 . . . . . . 7 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
74, 6syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
87nn0cnd 12451 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
98adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
109mul02d 11318 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (0 · (𝑂‘(𝑁 · 𝐴))) = 0)
11 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑁 gcd (𝑂𝐴)) = 0)
1211oveq1d 7367 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) = (0 · (𝑂‘(𝑁 · 𝐴))))
13 simp3 1138 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
141, 5odcl 19450 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
15143ad2ant2 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
1615nn0zd 12500 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
17 gcdeq0 16430 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1813, 16, 17syl2anc 584 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1918simplbda 499 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = 0)
2010, 12, 193eqtr4rd 2779 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
21 simpll3 1215 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
2216ad2antrr 726 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂𝐴) ∈ ℤ)
23 gcddvds 16416 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2421, 22, 23syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2524simprd 495 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴))
2613, 16gcdcld 16421 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2726adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2827nn0zd 12500 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
2928adantr 480 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
30 nn0z 12499 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3130adantl 481 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
32 dvdstr 16207 . . . . . . 7 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3329, 22, 31, 32syl3anc 1373 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3425, 33mpand 695 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
357nn0zd 12500 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
3635ad2antrr 726 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
37 muldvds1 16193 . . . . . 6 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3829, 36, 31, 37syl3anc 1373 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
39 dvdszrcl 16170 . . . . . . . . 9 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ))
40 divides 16167 . . . . . . . . 9 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4139, 40syl 17 . . . . . . . 8 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4241ibi 267 . . . . . . 7 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥)
4335adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
44 simprr 772 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
4528adantrr 717 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
46 simprl 770 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ≠ 0)
47 dvdscmulr 16197 . . . . . . . . . . . . 13 (((𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
4843, 44, 45, 46, 47syl112anc 1376 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
491, 5, 2odmulgid 19468 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
5049adantrl 716 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
51 simpl3 1194 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
52 dvdsmulgcd 16469 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5344, 51, 52syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5448, 50, 533bitrrd 306 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦)))
5545zcnd 12584 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
5644zcnd 12584 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
5755, 56mulcomd 11140 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝑦) = (𝑦 · (𝑁 gcd (𝑂𝐴))))
5857breq2d 5105 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5954, 58bitrd 279 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
6059anassrs 467 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
61 breq2 5097 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ (𝑂𝐴) ∥ 𝑥))
62 breq2 5097 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6361, 62bibi12d 345 . . . . . . . . 9 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))) ↔ ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6460, 63syl5ibcom 245 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6564rexlimdva 3134 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6642, 65syl5 34 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6766adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6834, 38, 67pm5.21ndd 379 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6968ralrimiva 3125 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
7015adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) ∈ ℕ0)
717adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
7227, 71nn0mulcld 12454 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0)
73 dvdsext 16234 . . . 4 (((𝑂𝐴) ∈ ℕ0 ∧ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7470, 72, 73syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7569, 74mpbird 257 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
7620, 75pm2.61dane 3016 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013   · cmul 11018  0cn0 12388  cz 12475  cdvds 16165   gcd cgcd 16407  Basecbs 17122  Grpcgrp 18848  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-od 19442
This theorem is referenced by:  odmulgeq  19471  odinv  19475  gexexlem  19766  fincygsubgodd  20028  unitscyglem2  42309  unitscyglem4  42311
  Copyright terms: Public domain W3C validator