Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptco1f1o Structured version   Visualization version   GIF version

Theorem fmptco1f1o 32576
Description: The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021.)
Hypotheses
Ref Expression
fmptco1f1o.a 𝐴 = (𝑅m 𝐸)
fmptco1f1o.b 𝐵 = (𝑅m 𝐷)
fmptco1f1o.f 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
fmptco1f1o.d (𝜑𝐷𝑉)
fmptco1f1o.e (𝜑𝐸𝑊)
fmptco1f1o.r (𝜑𝑅𝑋)
fmptco1f1o.t (𝜑𝑇:𝐷1-1-onto𝐸)
Assertion
Ref Expression
fmptco1f1o (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐷(𝑓)   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝑉(𝑓)   𝑊(𝑓)   𝑋(𝑓)

Proof of Theorem fmptco1f1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fmptco1f1o.f . . . 4 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
21a1i 11 . . 3 (𝜑𝐹 = (𝑓𝐴 ↦ (𝑓𝑇)))
3 fmptco1f1o.r . . . . . 6 (𝜑𝑅𝑋)
43adantr 480 . . . . 5 ((𝜑𝑓𝐴) → 𝑅𝑋)
5 fmptco1f1o.d . . . . . 6 (𝜑𝐷𝑉)
65adantr 480 . . . . 5 ((𝜑𝑓𝐴) → 𝐷𝑉)
7 simpr 484 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐴)
8 fmptco1f1o.a . . . . . . . 8 𝐴 = (𝑅m 𝐸)
97, 8eleqtrdi 2838 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝑅m 𝐸))
10 elmapi 8776 . . . . . . 7 (𝑓 ∈ (𝑅m 𝐸) → 𝑓:𝐸𝑅)
119, 10syl 17 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝐸𝑅)
12 fmptco1f1o.t . . . . . . . 8 (𝜑𝑇:𝐷1-1-onto𝐸)
13 f1of 6764 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑𝑇:𝐷𝐸)
1514adantr 480 . . . . . 6 ((𝜑𝑓𝐴) → 𝑇:𝐷𝐸)
16 fco 6676 . . . . . 6 ((𝑓:𝐸𝑅𝑇:𝐷𝐸) → (𝑓𝑇):𝐷𝑅)
1711, 15, 16syl2anc 584 . . . . 5 ((𝜑𝑓𝐴) → (𝑓𝑇):𝐷𝑅)
18 elmapg 8766 . . . . . 6 ((𝑅𝑋𝐷𝑉) → ((𝑓𝑇) ∈ (𝑅m 𝐷) ↔ (𝑓𝑇):𝐷𝑅))
1918biimpar 477 . . . . 5 (((𝑅𝑋𝐷𝑉) ∧ (𝑓𝑇):𝐷𝑅) → (𝑓𝑇) ∈ (𝑅m 𝐷))
204, 6, 17, 19syl21anc 837 . . . 4 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ (𝑅m 𝐷))
21 fmptco1f1o.b . . . 4 𝐵 = (𝑅m 𝐷)
2220, 21eleqtrrdi 2839 . . 3 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ 𝐵)
233adantr 480 . . . . 5 ((𝜑𝑔𝐵) → 𝑅𝑋)
24 fmptco1f1o.e . . . . . 6 (𝜑𝐸𝑊)
2524adantr 480 . . . . 5 ((𝜑𝑔𝐵) → 𝐸𝑊)
26 simpr 484 . . . . . . . 8 ((𝜑𝑔𝐵) → 𝑔𝐵)
2726, 21eleqtrdi 2838 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝑅m 𝐷))
28 elmapi 8776 . . . . . . 7 (𝑔 ∈ (𝑅m 𝐷) → 𝑔:𝐷𝑅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐷𝑅)
30 f1ocnv 6776 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐸1-1-onto𝐷)
31 f1of 6764 . . . . . . . 8 (𝑇:𝐸1-1-onto𝐷𝑇:𝐸𝐷)
3212, 30, 313syl 18 . . . . . . 7 (𝜑𝑇:𝐸𝐷)
3332adantr 480 . . . . . 6 ((𝜑𝑔𝐵) → 𝑇:𝐸𝐷)
34 fco 6676 . . . . . 6 ((𝑔:𝐷𝑅𝑇:𝐸𝐷) → (𝑔𝑇):𝐸𝑅)
3529, 33, 34syl2anc 584 . . . . 5 ((𝜑𝑔𝐵) → (𝑔𝑇):𝐸𝑅)
36 elmapg 8766 . . . . . 6 ((𝑅𝑋𝐸𝑊) → ((𝑔𝑇) ∈ (𝑅m 𝐸) ↔ (𝑔𝑇):𝐸𝑅))
3736biimpar 477 . . . . 5 (((𝑅𝑋𝐸𝑊) ∧ (𝑔𝑇):𝐸𝑅) → (𝑔𝑇) ∈ (𝑅m 𝐸))
3823, 25, 35, 37syl21anc 837 . . . 4 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ (𝑅m 𝐸))
3938, 8eleqtrrdi 2839 . . 3 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ 𝐴)
40 coass 6214 . . . . . . 7 ((𝑔𝑇) ∘ 𝑇) = (𝑔 ∘ (𝑇𝑇))
4112ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷1-1-onto𝐸)
42 f1ococnv1 6793 . . . . . . . . . 10 (𝑇:𝐷1-1-onto𝐸 → (𝑇𝑇) = ( I ↾ 𝐷))
4342coeq2d 5805 . . . . . . . . 9 (𝑇:𝐷1-1-onto𝐸 → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4441, 43syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4529adantlr 715 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔:𝐷𝑅)
46 fcoi1 6698 . . . . . . . . 9 (𝑔:𝐷𝑅 → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4745, 46syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4844, 47eqtrd 2764 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = 𝑔)
4940, 48eqtr2id 2777 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔 = ((𝑔𝑇) ∘ 𝑇))
5049eqeq1d 2731 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 = (𝑓𝑇) ↔ ((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇)))
51 eqcom 2736 . . . . . 6 (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇))
5251a1i 11 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇)))
53 f1ofo 6771 . . . . . . 7 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷onto𝐸)
5441, 53syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷onto𝐸)
55 simplr 768 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓𝐴)
5655, 8eleqtrdi 2838 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 ∈ (𝑅m 𝐸))
57 elmapfn 8792 . . . . . . 7 (𝑓 ∈ (𝑅m 𝐸) → 𝑓 Fn 𝐸)
5856, 57syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 Fn 𝐸)
59 elmapfn 8792 . . . . . . . 8 ((𝑔𝑇) ∈ (𝑅m 𝐸) → (𝑔𝑇) Fn 𝐸)
6038, 59syl 17 . . . . . . 7 ((𝜑𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
6160adantlr 715 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
62 cocan2 7229 . . . . . 6 ((𝑇:𝐷onto𝐸𝑓 Fn 𝐸 ∧ (𝑔𝑇) Fn 𝐸) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6354, 58, 61, 62syl3anc 1373 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6450, 52, 633bitrrd 306 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
6564anasss 466 . . 3 ((𝜑 ∧ (𝑓𝐴𝑔𝐵)) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
662, 22, 39, 65f1o3d 32569 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑔𝐵 ↦ (𝑔𝑇))))
6766simpld 494 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cmpt 5173   I cid 5513  ccnv 5618  cres 5621  ccom 5623   Fn wfn 6477  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by:  reprpmtf1o  34594
  Copyright terms: Public domain W3C validator