Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptco1f1o Structured version   Visualization version   GIF version

Theorem fmptco1f1o 31547
Description: The action of composing (to the right) with a bijection is itself a bijection of functions. (Contributed by Thierry Arnoux, 3-Jan-2021.)
Hypotheses
Ref Expression
fmptco1f1o.a 𝐴 = (𝑅m 𝐸)
fmptco1f1o.b 𝐵 = (𝑅m 𝐷)
fmptco1f1o.f 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
fmptco1f1o.d (𝜑𝐷𝑉)
fmptco1f1o.e (𝜑𝐸𝑊)
fmptco1f1o.r (𝜑𝑅𝑋)
fmptco1f1o.t (𝜑𝑇:𝐷1-1-onto𝐸)
Assertion
Ref Expression
fmptco1f1o (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐷(𝑓)   𝑅(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝑉(𝑓)   𝑊(𝑓)   𝑋(𝑓)

Proof of Theorem fmptco1f1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fmptco1f1o.f . . . 4 𝐹 = (𝑓𝐴 ↦ (𝑓𝑇))
21a1i 11 . . 3 (𝜑𝐹 = (𝑓𝐴 ↦ (𝑓𝑇)))
3 fmptco1f1o.r . . . . . 6 (𝜑𝑅𝑋)
43adantr 481 . . . . 5 ((𝜑𝑓𝐴) → 𝑅𝑋)
5 fmptco1f1o.d . . . . . 6 (𝜑𝐷𝑉)
65adantr 481 . . . . 5 ((𝜑𝑓𝐴) → 𝐷𝑉)
7 simpr 485 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐴)
8 fmptco1f1o.a . . . . . . . 8 𝐴 = (𝑅m 𝐸)
97, 8eleqtrdi 2848 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝑅m 𝐸))
10 elmapi 8787 . . . . . . 7 (𝑓 ∈ (𝑅m 𝐸) → 𝑓:𝐸𝑅)
119, 10syl 17 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝐸𝑅)
12 fmptco1f1o.t . . . . . . . 8 (𝜑𝑇:𝐷1-1-onto𝐸)
13 f1of 6784 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑𝑇:𝐷𝐸)
1514adantr 481 . . . . . 6 ((𝜑𝑓𝐴) → 𝑇:𝐷𝐸)
16 fco 6692 . . . . . 6 ((𝑓:𝐸𝑅𝑇:𝐷𝐸) → (𝑓𝑇):𝐷𝑅)
1711, 15, 16syl2anc 584 . . . . 5 ((𝜑𝑓𝐴) → (𝑓𝑇):𝐷𝑅)
18 elmapg 8778 . . . . . 6 ((𝑅𝑋𝐷𝑉) → ((𝑓𝑇) ∈ (𝑅m 𝐷) ↔ (𝑓𝑇):𝐷𝑅))
1918biimpar 478 . . . . 5 (((𝑅𝑋𝐷𝑉) ∧ (𝑓𝑇):𝐷𝑅) → (𝑓𝑇) ∈ (𝑅m 𝐷))
204, 6, 17, 19syl21anc 836 . . . 4 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ (𝑅m 𝐷))
21 fmptco1f1o.b . . . 4 𝐵 = (𝑅m 𝐷)
2220, 21eleqtrrdi 2849 . . 3 ((𝜑𝑓𝐴) → (𝑓𝑇) ∈ 𝐵)
233adantr 481 . . . . 5 ((𝜑𝑔𝐵) → 𝑅𝑋)
24 fmptco1f1o.e . . . . . 6 (𝜑𝐸𝑊)
2524adantr 481 . . . . 5 ((𝜑𝑔𝐵) → 𝐸𝑊)
26 simpr 485 . . . . . . . 8 ((𝜑𝑔𝐵) → 𝑔𝐵)
2726, 21eleqtrdi 2848 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝑅m 𝐷))
28 elmapi 8787 . . . . . . 7 (𝑔 ∈ (𝑅m 𝐷) → 𝑔:𝐷𝑅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐷𝑅)
30 f1ocnv 6796 . . . . . . . 8 (𝑇:𝐷1-1-onto𝐸𝑇:𝐸1-1-onto𝐷)
31 f1of 6784 . . . . . . . 8 (𝑇:𝐸1-1-onto𝐷𝑇:𝐸𝐷)
3212, 30, 313syl 18 . . . . . . 7 (𝜑𝑇:𝐸𝐷)
3332adantr 481 . . . . . 6 ((𝜑𝑔𝐵) → 𝑇:𝐸𝐷)
34 fco 6692 . . . . . 6 ((𝑔:𝐷𝑅𝑇:𝐸𝐷) → (𝑔𝑇):𝐸𝑅)
3529, 33, 34syl2anc 584 . . . . 5 ((𝜑𝑔𝐵) → (𝑔𝑇):𝐸𝑅)
36 elmapg 8778 . . . . . 6 ((𝑅𝑋𝐸𝑊) → ((𝑔𝑇) ∈ (𝑅m 𝐸) ↔ (𝑔𝑇):𝐸𝑅))
3736biimpar 478 . . . . 5 (((𝑅𝑋𝐸𝑊) ∧ (𝑔𝑇):𝐸𝑅) → (𝑔𝑇) ∈ (𝑅m 𝐸))
3823, 25, 35, 37syl21anc 836 . . . 4 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ (𝑅m 𝐸))
3938, 8eleqtrrdi 2849 . . 3 ((𝜑𝑔𝐵) → (𝑔𝑇) ∈ 𝐴)
40 coass 6217 . . . . . . 7 ((𝑔𝑇) ∘ 𝑇) = (𝑔 ∘ (𝑇𝑇))
4112ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷1-1-onto𝐸)
42 f1ococnv1 6813 . . . . . . . . . 10 (𝑇:𝐷1-1-onto𝐸 → (𝑇𝑇) = ( I ↾ 𝐷))
4342coeq2d 5818 . . . . . . . . 9 (𝑇:𝐷1-1-onto𝐸 → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4441, 43syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = (𝑔 ∘ ( I ↾ 𝐷)))
4529adantlr 713 . . . . . . . . 9 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔:𝐷𝑅)
46 fcoi1 6716 . . . . . . . . 9 (𝑔:𝐷𝑅 → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4745, 46syl 17 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔)
4844, 47eqtrd 2776 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 ∘ (𝑇𝑇)) = 𝑔)
4940, 48eqtr2id 2789 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑔 = ((𝑔𝑇) ∘ 𝑇))
5049eqeq1d 2738 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔 = (𝑓𝑇) ↔ ((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇)))
51 eqcom 2743 . . . . . 6 (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇))
5251a1i 11 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (((𝑔𝑇) ∘ 𝑇) = (𝑓𝑇) ↔ (𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇)))
53 f1ofo 6791 . . . . . . 7 (𝑇:𝐷1-1-onto𝐸𝑇:𝐷onto𝐸)
5441, 53syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑇:𝐷onto𝐸)
55 simplr 767 . . . . . . . 8 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓𝐴)
5655, 8eleqtrdi 2848 . . . . . . 7 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 ∈ (𝑅m 𝐸))
57 elmapfn 8803 . . . . . . 7 (𝑓 ∈ (𝑅m 𝐸) → 𝑓 Fn 𝐸)
5856, 57syl 17 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → 𝑓 Fn 𝐸)
59 elmapfn 8803 . . . . . . . 8 ((𝑔𝑇) ∈ (𝑅m 𝐸) → (𝑔𝑇) Fn 𝐸)
6038, 59syl 17 . . . . . . 7 ((𝜑𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
6160adantlr 713 . . . . . 6 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑔𝑇) Fn 𝐸)
62 cocan2 7238 . . . . . 6 ((𝑇:𝐷onto𝐸𝑓 Fn 𝐸 ∧ (𝑔𝑇) Fn 𝐸) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6354, 58, 61, 62syl3anc 1371 . . . . 5 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → ((𝑓𝑇) = ((𝑔𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔𝑇)))
6450, 52, 633bitrrd 305 . . . 4 (((𝜑𝑓𝐴) ∧ 𝑔𝐵) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
6564anasss 467 . . 3 ((𝜑 ∧ (𝑓𝐴𝑔𝐵)) → (𝑓 = (𝑔𝑇) ↔ 𝑔 = (𝑓𝑇)))
662, 22, 39, 65f1o3d 31541 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑔𝐵 ↦ (𝑔𝑇))))
6766simpld 495 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cmpt 5188   I cid 5530  ccnv 5632  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  (class class class)co 7357  m cmap 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767
This theorem is referenced by:  reprpmtf1o  33239
  Copyright terms: Public domain W3C validator