Step | Hyp | Ref
| Expression |
1 | | fmptco1f1o.f |
. . . 4
⊢ 𝐹 = (𝑓 ∈ 𝐴 ↦ (𝑓 ∘ 𝑇)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑓 ∈ 𝐴 ↦ (𝑓 ∘ 𝑇))) |
3 | | fmptco1f1o.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑅 ∈ 𝑋) |
5 | | fmptco1f1o.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
6 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝐷 ∈ 𝑉) |
7 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ 𝐴) |
8 | | fmptco1f1o.a |
. . . . . . . 8
⊢ 𝐴 = (𝑅 ↑m 𝐸) |
9 | 7, 8 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ (𝑅 ↑m 𝐸)) |
10 | | elmapi 8637 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑅 ↑m 𝐸) → 𝑓:𝐸⟶𝑅) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝐸⟶𝑅) |
12 | | fmptco1f1o.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇:𝐷–1-1-onto→𝐸) |
13 | | f1of 6716 |
. . . . . . . 8
⊢ (𝑇:𝐷–1-1-onto→𝐸 → 𝑇:𝐷⟶𝐸) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇:𝐷⟶𝐸) |
15 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑇:𝐷⟶𝐸) |
16 | | fco 6624 |
. . . . . 6
⊢ ((𝑓:𝐸⟶𝑅 ∧ 𝑇:𝐷⟶𝐸) → (𝑓 ∘ 𝑇):𝐷⟶𝑅) |
17 | 11, 15, 16 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → (𝑓 ∘ 𝑇):𝐷⟶𝑅) |
18 | | elmapg 8628 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑋 ∧ 𝐷 ∈ 𝑉) → ((𝑓 ∘ 𝑇) ∈ (𝑅 ↑m 𝐷) ↔ (𝑓 ∘ 𝑇):𝐷⟶𝑅)) |
19 | 18 | biimpar 478 |
. . . . 5
⊢ (((𝑅 ∈ 𝑋 ∧ 𝐷 ∈ 𝑉) ∧ (𝑓 ∘ 𝑇):𝐷⟶𝑅) → (𝑓 ∘ 𝑇) ∈ (𝑅 ↑m 𝐷)) |
20 | 4, 6, 17, 19 | syl21anc 835 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → (𝑓 ∘ 𝑇) ∈ (𝑅 ↑m 𝐷)) |
21 | | fmptco1f1o.b |
. . . 4
⊢ 𝐵 = (𝑅 ↑m 𝐷) |
22 | 20, 21 | eleqtrrdi 2850 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → (𝑓 ∘ 𝑇) ∈ 𝐵) |
23 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑅 ∈ 𝑋) |
24 | | fmptco1f1o.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑊) |
25 | 24 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝐸 ∈ 𝑊) |
26 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ 𝐵) |
27 | 26, 21 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ (𝑅 ↑m 𝐷)) |
28 | | elmapi 8637 |
. . . . . . 7
⊢ (𝑔 ∈ (𝑅 ↑m 𝐷) → 𝑔:𝐷⟶𝑅) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐷⟶𝑅) |
30 | | f1ocnv 6728 |
. . . . . . . 8
⊢ (𝑇:𝐷–1-1-onto→𝐸 → ◡𝑇:𝐸–1-1-onto→𝐷) |
31 | | f1of 6716 |
. . . . . . . 8
⊢ (◡𝑇:𝐸–1-1-onto→𝐷 → ◡𝑇:𝐸⟶𝐷) |
32 | 12, 30, 31 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ◡𝑇:𝐸⟶𝐷) |
33 | 32 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ◡𝑇:𝐸⟶𝐷) |
34 | | fco 6624 |
. . . . . 6
⊢ ((𝑔:𝐷⟶𝑅 ∧ ◡𝑇:𝐸⟶𝐷) → (𝑔 ∘ ◡𝑇):𝐸⟶𝑅) |
35 | 29, 33, 34 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ◡𝑇):𝐸⟶𝑅) |
36 | | elmapg 8628 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑋 ∧ 𝐸 ∈ 𝑊) → ((𝑔 ∘ ◡𝑇) ∈ (𝑅 ↑m 𝐸) ↔ (𝑔 ∘ ◡𝑇):𝐸⟶𝑅)) |
37 | 36 | biimpar 478 |
. . . . 5
⊢ (((𝑅 ∈ 𝑋 ∧ 𝐸 ∈ 𝑊) ∧ (𝑔 ∘ ◡𝑇):𝐸⟶𝑅) → (𝑔 ∘ ◡𝑇) ∈ (𝑅 ↑m 𝐸)) |
38 | 23, 25, 35, 37 | syl21anc 835 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ◡𝑇) ∈ (𝑅 ↑m 𝐸)) |
39 | 38, 8 | eleqtrrdi 2850 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ◡𝑇) ∈ 𝐴) |
40 | | coass 6169 |
. . . . . . 7
⊢ ((𝑔 ∘ ◡𝑇) ∘ 𝑇) = (𝑔 ∘ (◡𝑇 ∘ 𝑇)) |
41 | 12 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑇:𝐷–1-1-onto→𝐸) |
42 | | f1ococnv1 6745 |
. . . . . . . . . 10
⊢ (𝑇:𝐷–1-1-onto→𝐸 → (◡𝑇 ∘ 𝑇) = ( I ↾ 𝐷)) |
43 | 42 | coeq2d 5771 |
. . . . . . . . 9
⊢ (𝑇:𝐷–1-1-onto→𝐸 → (𝑔 ∘ (◡𝑇 ∘ 𝑇)) = (𝑔 ∘ ( I ↾ 𝐷))) |
44 | 41, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ (◡𝑇 ∘ 𝑇)) = (𝑔 ∘ ( I ↾ 𝐷))) |
45 | 29 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐷⟶𝑅) |
46 | | fcoi1 6648 |
. . . . . . . . 9
⊢ (𝑔:𝐷⟶𝑅 → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔) |
47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ( I ↾ 𝐷)) = 𝑔) |
48 | 44, 47 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ (◡𝑇 ∘ 𝑇)) = 𝑔) |
49 | 40, 48 | eqtr2id 2791 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑔 = ((𝑔 ∘ ◡𝑇) ∘ 𝑇)) |
50 | 49 | eqeq1d 2740 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑔 = (𝑓 ∘ 𝑇) ↔ ((𝑔 ∘ ◡𝑇) ∘ 𝑇) = (𝑓 ∘ 𝑇))) |
51 | | eqcom 2745 |
. . . . . 6
⊢ (((𝑔 ∘ ◡𝑇) ∘ 𝑇) = (𝑓 ∘ 𝑇) ↔ (𝑓 ∘ 𝑇) = ((𝑔 ∘ ◡𝑇) ∘ 𝑇)) |
52 | 51 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (((𝑔 ∘ ◡𝑇) ∘ 𝑇) = (𝑓 ∘ 𝑇) ↔ (𝑓 ∘ 𝑇) = ((𝑔 ∘ ◡𝑇) ∘ 𝑇))) |
53 | | f1ofo 6723 |
. . . . . . 7
⊢ (𝑇:𝐷–1-1-onto→𝐸 → 𝑇:𝐷–onto→𝐸) |
54 | 41, 53 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑇:𝐷–onto→𝐸) |
55 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑓 ∈ 𝐴) |
56 | 55, 8 | eleqtrdi 2849 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑓 ∈ (𝑅 ↑m 𝐸)) |
57 | | elmapfn 8653 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑅 ↑m 𝐸) → 𝑓 Fn 𝐸) |
58 | 56, 57 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → 𝑓 Fn 𝐸) |
59 | | elmapfn 8653 |
. . . . . . . 8
⊢ ((𝑔 ∘ ◡𝑇) ∈ (𝑅 ↑m 𝐸) → (𝑔 ∘ ◡𝑇) Fn 𝐸) |
60 | 38, 59 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ◡𝑇) Fn 𝐸) |
61 | 60 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑔 ∘ ◡𝑇) Fn 𝐸) |
62 | | cocan2 7164 |
. . . . . 6
⊢ ((𝑇:𝐷–onto→𝐸 ∧ 𝑓 Fn 𝐸 ∧ (𝑔 ∘ ◡𝑇) Fn 𝐸) → ((𝑓 ∘ 𝑇) = ((𝑔 ∘ ◡𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔 ∘ ◡𝑇))) |
63 | 54, 58, 61, 62 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → ((𝑓 ∘ 𝑇) = ((𝑔 ∘ ◡𝑇) ∘ 𝑇) ↔ 𝑓 = (𝑔 ∘ ◡𝑇))) |
64 | 50, 52, 63 | 3bitrrd 306 |
. . . 4
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐴) ∧ 𝑔 ∈ 𝐵) → (𝑓 = (𝑔 ∘ ◡𝑇) ↔ 𝑔 = (𝑓 ∘ 𝑇))) |
65 | 64 | anasss 467 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵)) → (𝑓 = (𝑔 ∘ ◡𝑇) ↔ 𝑔 = (𝑓 ∘ 𝑇))) |
66 | 2, 22, 39, 65 | f1o3d 30962 |
. 2
⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑔 ∈ 𝐵 ↦ (𝑔 ∘ ◡𝑇)))) |
67 | 66 | simpld 495 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |