MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Visualization version   GIF version

Theorem prdsbl 22666
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 22680) - for a counterexample the point 𝑝 in ℝ↑ℕ whose 𝑛-th coordinate is 1 − 1 / 𝑛 is in X𝑛 ∈ ℕball(0, 1) but is not in the 1-ball of the product (since 𝑑(0, 𝑝) = 1).

The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbl.b 𝐵 = (Base‘𝑌)
prdsbl.v 𝑉 = (Base‘𝑅)
prdsbl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsbl.d 𝐷 = (dist‘𝑌)
prdsbl.s (𝜑𝑆𝑊)
prdsbl.i (𝜑𝐼 ∈ Fin)
prdsbl.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsbl.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
prdsbl.p (𝜑𝑃𝐵)
prdsbl.a (𝜑𝐴 ∈ ℝ*)
prdsbl.g (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
prdsbl (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsbl
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbl.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
3 prdsbl.s . . . . . . . . 9 (𝜑𝑆𝑊)
4 prdsbl.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
5 prdsbl.r . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝑅𝑍)
65ralrimiva 3175 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
7 prdsbl.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
81, 2, 3, 4, 6, 7prdsbas3 16494 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
98eleq2d 2892 . . . . . . 7 (𝜑 → (𝑓𝐵𝑓X𝑥𝐼 𝑉))
109biimpa 470 . . . . . 6 ((𝜑𝑓𝐵) → 𝑓X𝑥𝐼 𝑉)
11 ixpfn 8181 . . . . . 6 (𝑓X𝑥𝐼 𝑉𝑓 Fn 𝐼)
12 vex 3417 . . . . . . . 8 𝑓 ∈ V
1312elixp 8182 . . . . . . 7 (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1413baib 533 . . . . . 6 (𝑓 Fn 𝐼 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1510, 11, 143syl 18 . . . . 5 ((𝜑𝑓𝐵) → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
16 prdsbl.m . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
1716adantlr 708 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
18 prdsbl.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 719 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐴 ∈ ℝ*)
20 prdsbl.p . . . . . . . . . 10 (𝜑𝑃𝐵)
211, 2, 3, 4, 6, 7, 20prdsbascl 16496 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2221adantr 474 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2322r19.21bi 3141 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
243adantr 474 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑆𝑊)
254adantr 474 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝐼 ∈ Fin)
266adantr 474 . . . . . . . . 9 ((𝜑𝑓𝐵) → ∀𝑥𝐼 𝑅𝑍)
27 simpr 479 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑓𝐵)
281, 2, 24, 25, 26, 7, 27prdsbascl 16496 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
2928r19.21bi 3141 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
30 elbl2 22565 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝐴 ∈ ℝ*) ∧ ((𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉)) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3117, 19, 23, 29, 30syl22anc 874 . . . . . 6 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3231ralbidva 3194 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
33 xmetcl 22506 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3417, 23, 29, 33syl3anc 1496 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3534ralrimiva 3175 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
36 eqid 2825 . . . . . . . . 9 (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))
37 breq1 4876 . . . . . . . . 9 (𝑧 = ((𝑃𝑥)𝐸(𝑓𝑥)) → (𝑧 < 𝐴 ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3836, 37ralrnmpt 6617 . . . . . . . 8 (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3935, 38syl 17 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
40 prdsbl.g . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4140adantr 474 . . . . . . . . 9 ((𝜑𝑓𝐵) → 0 < 𝐴)
42 c0ex 10350 . . . . . . . . . 10 0 ∈ V
43 breq1 4876 . . . . . . . . . 10 (𝑧 = 0 → (𝑧 < 𝐴 ↔ 0 < 𝐴))
4442, 43ralsn 4442 . . . . . . . . 9 (∀𝑧 ∈ {0}𝑧 < 𝐴 ↔ 0 < 𝐴)
4541, 44sylibr 226 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑧 ∈ {0}𝑧 < 𝐴)
46 ralunb 4021 . . . . . . . . 9 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴))
4720adantr 474 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑃𝐵)
48 prdsbl.e . . . . . . . . . . . 12 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
49 prdsbl.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 16498 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
51 xrltso 12260 . . . . . . . . . . . . 13 < Or ℝ*
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → < Or ℝ*)
5336rnmpt 5604 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))}
54 abrexfi 8535 . . . . . . . . . . . . . . 15 (𝐼 ∈ Fin → {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))} ∈ Fin)
5553, 54syl5eqel 2910 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
5625, 55syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
57 snfi 8307 . . . . . . . . . . . . 13 {0} ∈ Fin
58 unfi 8496 . . . . . . . . . . . . 13 ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
5956, 57, 58sylancl 582 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
60 ssun2 4004 . . . . . . . . . . . . . 14 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
6142snss 4535 . . . . . . . . . . . . . 14 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
6260, 61mpbir 223 . . . . . . . . . . . . 13 0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
63 ne0i 4150 . . . . . . . . . . . . 13 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6462, 63mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6534fmpttd 6634 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
6665frnd 6285 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
67 0xr 10403 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → 0 ∈ ℝ*)
6968snssd 4558 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → {0} ⊆ ℝ*)
7066, 69unssd 4016 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
71 fisupcl 8644 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7252, 59, 64, 70, 71syl13anc 1497 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7350, 72eqeltrd 2906 . . . . . . . . . 10 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
74 breq1 4876 . . . . . . . . . . 11 (𝑧 = (𝑃𝐷𝑓) → (𝑧 < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
7574rspcv 3522 . . . . . . . . . 10 ((𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7673, 75syl 17 . . . . . . . . 9 ((𝜑𝑓𝐵) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7746, 76syl5bir 235 . . . . . . . 8 ((𝜑𝑓𝐵) → ((∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴) → (𝑃𝐷𝑓) < 𝐴))
7845, 77mpan2d 687 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7939, 78sylbird 252 . . . . . 6 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
8070adantr 474 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
81 ssun1 4003 . . . . . . . . . . 11 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
82 ovex 6937 . . . . . . . . . . . . . 14 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ V
8382elabrex 6756 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8483adantl 475 . . . . . . . . . . . 12 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8584, 53syl6eleqr 2917 . . . . . . . . . . 11 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))))
8681, 85sseldi 3825 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
87 supxrub 12442 . . . . . . . . . 10 (((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8880, 86, 87syl2anc 581 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8950adantr 474 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
9088, 89breqtrrd 4901 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓))
911, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 22544 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
9291ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐷 ∈ (∞Met‘𝐵))
9320ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑃𝐵)
9427adantr 474 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑓𝐵)
95 xmetcl 22506 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝑓𝐵) → (𝑃𝐷𝑓) ∈ ℝ*)
9692, 93, 94, 95syl3anc 1496 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) ∈ ℝ*)
97 xrlelttr 12275 . . . . . . . . 9 ((((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝑃𝐷𝑓) ∈ ℝ*𝐴 ∈ ℝ*) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9834, 96, 19, 97syl3anc 1496 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9990, 98mpand 688 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝐷𝑓) < 𝐴 → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10099ralrimdva 3178 . . . . . 6 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴 → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10179, 100impbid 204 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
10215, 32, 1013bitrrd 298 . . . 4 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
103102pm5.32da 576 . . 3 (𝜑 → ((𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
104 elbl 22563 . . . 4 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝐴 ∈ ℝ*) → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10591, 20, 18, 104syl3anc 1496 . . 3 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10621r19.21bi 3141 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
10718adantr 474 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐴 ∈ ℝ*)
108 blssm 22593 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉𝐴 ∈ ℝ*) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
10916, 106, 107, 108syl3anc 1496 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
110109ralrimiva 3175 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
111 ss2ixp 8188 . . . . . . 7 (∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
112110, 111syl 17 . . . . . 6 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
113112, 8sseqtr4d 3867 . . . . 5 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝐵)
114113sseld 3826 . . . 4 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) → 𝑓𝐵))
115114pm4.71rd 560 . . 3 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
116103, 105, 1153bitr4d 303 . 2 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ 𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
117116eqrdv 2823 1 (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  {cab 2811  wne 2999  wral 3117  wrex 3118  cun 3796  wss 3798  c0 4144  {csn 4397   class class class wbr 4873  cmpt 4952   Or wor 5262   × cxp 5340  ran crn 5343  cres 5344   Fn wfn 6118  cfv 6123  (class class class)co 6905  Xcixp 8175  Fincfn 8222  supcsup 8615  0cc0 10252  *cxr 10390   < clt 10391  cle 10392  Basecbs 16222  distcds 16314  Xscprds 16459  ∞Metcxmet 20091  ballcbl 20093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-icc 12470  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-hom 16329  df-cco 16330  df-prds 16461  df-psmet 20098  df-xmet 20099  df-bl 20101
This theorem is referenced by:  prdsxmslem2  22704  prdstotbnd  34135  prdsbnd2  34136
  Copyright terms: Public domain W3C validator