MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Visualization version   GIF version

Theorem prdsbl 23016
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 23030) - for a counterexample the point 𝑝 in ℝ↑ℕ whose 𝑛-th coordinate is 1 − 1 / 𝑛 is in X𝑛 ∈ ℕball(0, 1) but is not in the 1-ball of the product (since 𝑑(0, 𝑝) = 1).

The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbl.b 𝐵 = (Base‘𝑌)
prdsbl.v 𝑉 = (Base‘𝑅)
prdsbl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsbl.d 𝐷 = (dist‘𝑌)
prdsbl.s (𝜑𝑆𝑊)
prdsbl.i (𝜑𝐼 ∈ Fin)
prdsbl.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsbl.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
prdsbl.p (𝜑𝑃𝐵)
prdsbl.a (𝜑𝐴 ∈ ℝ*)
prdsbl.g (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
prdsbl (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsbl
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbl.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
3 prdsbl.s . . . . . . . . 9 (𝜑𝑆𝑊)
4 prdsbl.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
5 prdsbl.r . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝑅𝑍)
65ralrimiva 3187 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
7 prdsbl.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
81, 2, 3, 4, 6, 7prdsbas3 16744 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
98eleq2d 2903 . . . . . . 7 (𝜑 → (𝑓𝐵𝑓X𝑥𝐼 𝑉))
109biimpa 477 . . . . . 6 ((𝜑𝑓𝐵) → 𝑓X𝑥𝐼 𝑉)
11 ixpfn 8456 . . . . . 6 (𝑓X𝑥𝐼 𝑉𝑓 Fn 𝐼)
12 vex 3503 . . . . . . . 8 𝑓 ∈ V
1312elixp 8457 . . . . . . 7 (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1413baib 536 . . . . . 6 (𝑓 Fn 𝐼 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1510, 11, 143syl 18 . . . . 5 ((𝜑𝑓𝐵) → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
16 prdsbl.m . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
1716adantlr 711 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
18 prdsbl.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 722 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐴 ∈ ℝ*)
20 prdsbl.p . . . . . . . . . 10 (𝜑𝑃𝐵)
211, 2, 3, 4, 6, 7, 20prdsbascl 16746 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2221adantr 481 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2322r19.21bi 3213 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
243adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑆𝑊)
254adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝐼 ∈ Fin)
266adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → ∀𝑥𝐼 𝑅𝑍)
27 simpr 485 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑓𝐵)
281, 2, 24, 25, 26, 7, 27prdsbascl 16746 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
2928r19.21bi 3213 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
30 elbl2 22915 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝐴 ∈ ℝ*) ∧ ((𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉)) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3117, 19, 23, 29, 30syl22anc 836 . . . . . 6 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3231ralbidva 3201 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
33 xmetcl 22856 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3417, 23, 29, 33syl3anc 1365 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3534ralrimiva 3187 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
36 eqid 2826 . . . . . . . . 9 (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))
37 breq1 5066 . . . . . . . . 9 (𝑧 = ((𝑃𝑥)𝐸(𝑓𝑥)) → (𝑧 < 𝐴 ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3836, 37ralrnmptw 6856 . . . . . . . 8 (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3935, 38syl 17 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
40 prdsbl.g . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4140adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 0 < 𝐴)
42 c0ex 10624 . . . . . . . . . 10 0 ∈ V
43 breq1 5066 . . . . . . . . . 10 (𝑧 = 0 → (𝑧 < 𝐴 ↔ 0 < 𝐴))
4442, 43ralsn 4618 . . . . . . . . 9 (∀𝑧 ∈ {0}𝑧 < 𝐴 ↔ 0 < 𝐴)
4541, 44sylibr 235 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑧 ∈ {0}𝑧 < 𝐴)
46 ralunb 4171 . . . . . . . . 9 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴))
4720adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑃𝐵)
48 prdsbl.e . . . . . . . . . . . 12 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
49 prdsbl.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 16748 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
51 xrltso 12524 . . . . . . . . . . . . 13 < Or ℝ*
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → < Or ℝ*)
5336rnmpt 5826 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))}
54 abrexfi 8813 . . . . . . . . . . . . . . 15 (𝐼 ∈ Fin → {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))} ∈ Fin)
5553, 54eqeltrid 2922 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
5625, 55syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
57 snfi 8583 . . . . . . . . . . . . 13 {0} ∈ Fin
58 unfi 8774 . . . . . . . . . . . . 13 ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
5956, 57, 58sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
60 ssun2 4153 . . . . . . . . . . . . . 14 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
6142snss 4717 . . . . . . . . . . . . . 14 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
6260, 61mpbir 232 . . . . . . . . . . . . 13 0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
63 ne0i 4304 . . . . . . . . . . . . 13 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6462, 63mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6534fmpttd 6875 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
6665frnd 6518 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
67 0xr 10677 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → 0 ∈ ℝ*)
6968snssd 4741 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → {0} ⊆ ℝ*)
7066, 69unssd 4166 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
71 fisupcl 8922 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7252, 59, 64, 70, 71syl13anc 1366 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7350, 72eqeltrd 2918 . . . . . . . . . 10 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
74 breq1 5066 . . . . . . . . . . 11 (𝑧 = (𝑃𝐷𝑓) → (𝑧 < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
7574rspcv 3622 . . . . . . . . . 10 ((𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7673, 75syl 17 . . . . . . . . 9 ((𝜑𝑓𝐵) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7746, 76syl5bir 244 . . . . . . . 8 ((𝜑𝑓𝐵) → ((∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴) → (𝑃𝐷𝑓) < 𝐴))
7845, 77mpan2d 690 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7939, 78sylbird 261 . . . . . 6 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
80 ssun1 4152 . . . . . . . . . . 11 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
81 ovex 7181 . . . . . . . . . . . . . 14 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ V
8281elabrex 6996 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8382adantl 482 . . . . . . . . . . . 12 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8483, 53syl6eleqr 2929 . . . . . . . . . . 11 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))))
8580, 84sseldi 3969 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
86 supxrub 12707 . . . . . . . . . 10 (((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8770, 85, 86syl2an2r 681 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8850adantr 481 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8987, 88breqtrrd 5091 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓))
901, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 22894 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
9190ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐷 ∈ (∞Met‘𝐵))
9220ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑃𝐵)
9327adantr 481 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑓𝐵)
94 xmetcl 22856 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝑓𝐵) → (𝑃𝐷𝑓) ∈ ℝ*)
9591, 92, 93, 94syl3anc 1365 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) ∈ ℝ*)
96 xrlelttr 12539 . . . . . . . . 9 ((((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝑃𝐷𝑓) ∈ ℝ*𝐴 ∈ ℝ*) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9734, 95, 19, 96syl3anc 1365 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9889, 97mpand 691 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝐷𝑓) < 𝐴 → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9998ralrimdva 3194 . . . . . 6 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴 → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10079, 99impbid 213 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
10115, 32, 1003bitrrd 307 . . . 4 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
102101pm5.32da 579 . . 3 (𝜑 → ((𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
103 elbl 22913 . . . 4 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝐴 ∈ ℝ*) → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10490, 20, 18, 103syl3anc 1365 . . 3 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10521r19.21bi 3213 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
10618adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐴 ∈ ℝ*)
107 blssm 22943 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉𝐴 ∈ ℝ*) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
10816, 105, 106, 107syl3anc 1365 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
109108ralrimiva 3187 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
110 ss2ixp 8463 . . . . . . 7 (∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
111109, 110syl 17 . . . . . 6 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
112111, 8sseqtrrd 4012 . . . . 5 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝐵)
113112sseld 3970 . . . 4 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) → 𝑓𝐵))
114113pm4.71rd 563 . . 3 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
115102, 104, 1143bitr4d 312 . 2 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ 𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
116115eqrdv 2824 1 (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  {cab 2804  wne 3021  wral 3143  wrex 3144  cun 3938  wss 3940  c0 4295  {csn 4564   class class class wbr 5063  cmpt 5143   Or wor 5472   × cxp 5552  ran crn 5555  cres 5556   Fn wfn 6347  cfv 6352  (class class class)co 7148  Xcixp 8450  Fincfn 8498  supcsup 8893  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  Basecbs 16473  distcds 16564  Xscprds 16709  ∞Metcxmet 20446  ballcbl 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-prds 16711  df-psmet 20453  df-xmet 20454  df-bl 20456
This theorem is referenced by:  prdsxmslem2  23054  prdstotbnd  34940  prdsbnd2  34941
  Copyright terms: Public domain W3C validator