MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Visualization version   GIF version

Theorem prdsbl 23084
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 23098) - for a counterexample the point 𝑝 in ℝ↑ℕ whose 𝑛-th coordinate is 1 − 1 / 𝑛 is in X𝑛 ∈ ℕball(0, 1) but is not in the 1-ball of the product (since 𝑑(0, 𝑝) = 1).

The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbl.b 𝐵 = (Base‘𝑌)
prdsbl.v 𝑉 = (Base‘𝑅)
prdsbl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsbl.d 𝐷 = (dist‘𝑌)
prdsbl.s (𝜑𝑆𝑊)
prdsbl.i (𝜑𝐼 ∈ Fin)
prdsbl.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsbl.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
prdsbl.p (𝜑𝑃𝐵)
prdsbl.a (𝜑𝐴 ∈ ℝ*)
prdsbl.g (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
prdsbl (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsbl
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbl.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
3 prdsbl.s . . . . . . . . 9 (𝜑𝑆𝑊)
4 prdsbl.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
5 prdsbl.r . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝑅𝑍)
65ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
7 prdsbl.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
81, 2, 3, 4, 6, 7prdsbas3 16737 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
98eleq2d 2898 . . . . . . 7 (𝜑 → (𝑓𝐵𝑓X𝑥𝐼 𝑉))
109biimpa 479 . . . . . 6 ((𝜑𝑓𝐵) → 𝑓X𝑥𝐼 𝑉)
11 ixpfn 8453 . . . . . 6 (𝑓X𝑥𝐼 𝑉𝑓 Fn 𝐼)
12 vex 3489 . . . . . . . 8 𝑓 ∈ V
1312elixp 8454 . . . . . . 7 (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1413baib 538 . . . . . 6 (𝑓 Fn 𝐼 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1510, 11, 143syl 18 . . . . 5 ((𝜑𝑓𝐵) → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
16 prdsbl.m . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
1716adantlr 713 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
18 prdsbl.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐴 ∈ ℝ*)
20 prdsbl.p . . . . . . . . . 10 (𝜑𝑃𝐵)
211, 2, 3, 4, 6, 7, 20prdsbascl 16739 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2221adantr 483 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2322r19.21bi 3208 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
243adantr 483 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑆𝑊)
254adantr 483 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝐼 ∈ Fin)
266adantr 483 . . . . . . . . 9 ((𝜑𝑓𝐵) → ∀𝑥𝐼 𝑅𝑍)
27 simpr 487 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑓𝐵)
281, 2, 24, 25, 26, 7, 27prdsbascl 16739 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
2928r19.21bi 3208 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
30 elbl2 22983 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝐴 ∈ ℝ*) ∧ ((𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉)) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3117, 19, 23, 29, 30syl22anc 836 . . . . . 6 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3231ralbidva 3196 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
33 xmetcl 22924 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3417, 23, 29, 33syl3anc 1367 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3534ralrimiva 3182 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
36 eqid 2821 . . . . . . . . 9 (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))
37 breq1 5055 . . . . . . . . 9 (𝑧 = ((𝑃𝑥)𝐸(𝑓𝑥)) → (𝑧 < 𝐴 ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3836, 37ralrnmptw 6846 . . . . . . . 8 (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3935, 38syl 17 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
40 prdsbl.g . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4140adantr 483 . . . . . . . . 9 ((𝜑𝑓𝐵) → 0 < 𝐴)
42 c0ex 10621 . . . . . . . . . 10 0 ∈ V
43 breq1 5055 . . . . . . . . . 10 (𝑧 = 0 → (𝑧 < 𝐴 ↔ 0 < 𝐴))
4442, 43ralsn 4605 . . . . . . . . 9 (∀𝑧 ∈ {0}𝑧 < 𝐴 ↔ 0 < 𝐴)
4541, 44sylibr 236 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑧 ∈ {0}𝑧 < 𝐴)
46 ralunb 4155 . . . . . . . . 9 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴))
4720adantr 483 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑃𝐵)
48 prdsbl.e . . . . . . . . . . . 12 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
49 prdsbl.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 16741 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
51 xrltso 12521 . . . . . . . . . . . . 13 < Or ℝ*
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → < Or ℝ*)
5336rnmpt 5813 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))}
54 abrexfi 8810 . . . . . . . . . . . . . . 15 (𝐼 ∈ Fin → {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))} ∈ Fin)
5553, 54eqeltrid 2917 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
5625, 55syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
57 snfi 8580 . . . . . . . . . . . . 13 {0} ∈ Fin
58 unfi 8771 . . . . . . . . . . . . 13 ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
5956, 57, 58sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
60 ssun2 4137 . . . . . . . . . . . . . 14 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
6142snss 4704 . . . . . . . . . . . . . 14 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
6260, 61mpbir 233 . . . . . . . . . . . . 13 0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
63 ne0i 4286 . . . . . . . . . . . . 13 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6462, 63mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6534fmpttd 6865 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
6665frnd 6507 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
67 0xr 10674 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → 0 ∈ ℝ*)
6968snssd 4728 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → {0} ⊆ ℝ*)
7066, 69unssd 4150 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
71 fisupcl 8919 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7252, 59, 64, 70, 71syl13anc 1368 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7350, 72eqeltrd 2913 . . . . . . . . . 10 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
74 breq1 5055 . . . . . . . . . . 11 (𝑧 = (𝑃𝐷𝑓) → (𝑧 < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
7574rspcv 3610 . . . . . . . . . 10 ((𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7673, 75syl 17 . . . . . . . . 9 ((𝜑𝑓𝐵) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7746, 76syl5bir 245 . . . . . . . 8 ((𝜑𝑓𝐵) → ((∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴) → (𝑃𝐷𝑓) < 𝐴))
7845, 77mpan2d 692 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7939, 78sylbird 262 . . . . . 6 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
80 ssun1 4136 . . . . . . . . . . 11 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
81 ovex 7175 . . . . . . . . . . . . . 14 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ V
8281elabrex 6988 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8382adantl 484 . . . . . . . . . . . 12 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8483, 53eleqtrrdi 2924 . . . . . . . . . . 11 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))))
8580, 84sseldi 3953 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
86 supxrub 12704 . . . . . . . . . 10 (((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8770, 85, 86syl2an2r 683 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8850adantr 483 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8987, 88breqtrrd 5080 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓))
901, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 22962 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
9190ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐷 ∈ (∞Met‘𝐵))
9220ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑃𝐵)
9327adantr 483 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑓𝐵)
94 xmetcl 22924 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝑓𝐵) → (𝑃𝐷𝑓) ∈ ℝ*)
9591, 92, 93, 94syl3anc 1367 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) ∈ ℝ*)
96 xrlelttr 12536 . . . . . . . . 9 ((((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝑃𝐷𝑓) ∈ ℝ*𝐴 ∈ ℝ*) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9734, 95, 19, 96syl3anc 1367 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9889, 97mpand 693 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝐷𝑓) < 𝐴 → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9998ralrimdva 3189 . . . . . 6 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴 → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10079, 99impbid 214 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
10115, 32, 1003bitrrd 308 . . . 4 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
102101pm5.32da 581 . . 3 (𝜑 → ((𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
103 elbl 22981 . . . 4 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝐴 ∈ ℝ*) → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10490, 20, 18, 103syl3anc 1367 . . 3 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10521r19.21bi 3208 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
10618adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐴 ∈ ℝ*)
107 blssm 23011 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉𝐴 ∈ ℝ*) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
10816, 105, 106, 107syl3anc 1367 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
109108ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
110 ss2ixp 8460 . . . . . . 7 (∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
111109, 110syl 17 . . . . . 6 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
112111, 8sseqtrrd 3996 . . . . 5 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝐵)
113112sseld 3954 . . . 4 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) → 𝑓𝐵))
114113pm4.71rd 565 . . 3 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
115102, 104, 1143bitr4d 313 . 2 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ 𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
116115eqrdv 2819 1 (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  cun 3922  wss 3924  c0 4279  {csn 4553   class class class wbr 5052  cmpt 5132   Or wor 5459   × cxp 5539  ran crn 5542  cres 5543   Fn wfn 6336  cfv 6341  (class class class)co 7142  Xcixp 8447  Fincfn 8495  supcsup 8890  0cc0 10523  *cxr 10660   < clt 10661  cle 10662  Basecbs 16466  distcds 16557  Xscprds 16702  ∞Metcxmet 20513  ballcbl 20515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-icc 12732  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-hom 16572  df-cco 16573  df-prds 16704  df-psmet 20520  df-xmet 20521  df-bl 20523
This theorem is referenced by:  prdsxmslem2  23122  prdstotbnd  35104  prdsbnd2  35105
  Copyright terms: Public domain W3C validator