![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | breq12i 5175 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
5 | 1, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: eqbrtrrid 5202 breqtrdi 5207 ssenen 9217 adderpq 11025 mulerpq 11026 ltaddnq 11043 ege2le3 16138 ovolfiniun 25555 dvfsumlem3 26089 basellem9 27150 pnt2 27675 pnt 27676 siilem1 30883 omndaddr 33057 ogrpaddltrd 33069 sn-0ne2 42382 |
Copyright terms: Public domain | W3C validator |