MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Visualization version   GIF version

Theorem 3brtr3g 5140
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 5116 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 218 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108
This theorem is referenced by:  eqbrtrrid  5143  breqtrdi  5148  ssenen  9115  adderpq  10909  mulerpq  10910  ltaddnq  10927  ege2le3  16056  ovolfiniun  25402  dvfsumlem3  25935  basellem9  26999  pnt2  27524  pnt  27525  siilem1  30780  omndaddr  33021  ogrpaddltrd  33033  sn-0ne2  42394
  Copyright terms: Public domain W3C validator