| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | breq12i 5111 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: eqbrtrrid 5138 breqtrdi 5143 ssenen 9092 adderpq 10885 mulerpq 10886 ltaddnq 10903 ege2le3 16032 omndaddr 20043 ogrpaddltrd 20054 ovolfiniun 25435 dvfsumlem3 25968 basellem9 27032 pnt2 27557 pnt 27558 siilem1 30830 sn-0ne2 42387 |
| Copyright terms: Public domain | W3C validator |