MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Visualization version   GIF version

Theorem 3brtr3g 5157
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 5133 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 218 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125
This theorem is referenced by:  eqbrtrrid  5160  breqtrdi  5165  ssenen  9170  adderpq  10975  mulerpq  10976  ltaddnq  10993  ege2le3  16111  ovolfiniun  25459  dvfsumlem3  25992  basellem9  27056  pnt2  27581  pnt  27582  siilem1  30837  omndaddr  33080  ogrpaddltrd  33092  sn-0ne2  42416
  Copyright terms: Public domain W3C validator