| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | breq12i 5098 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: eqbrtrrid 5125 breqtrdi 5130 ssenen 9064 adderpq 10847 mulerpq 10848 ltaddnq 10865 ege2le3 15997 omndaddr 20041 ogrpaddltrd 20052 ovolfiniun 25429 dvfsumlem3 25962 basellem9 27026 pnt2 27551 pnt 27552 siilem1 30831 sn-0ne2 42498 |
| Copyright terms: Public domain | W3C validator |