MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Visualization version   GIF version

Theorem 3brtr3g 5135
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 5111 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 218 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103
This theorem is referenced by:  eqbrtrrid  5138  breqtrdi  5143  ssenen  9092  adderpq  10885  mulerpq  10886  ltaddnq  10903  ege2le3  16032  omndaddr  20043  ogrpaddltrd  20054  ovolfiniun  25435  dvfsumlem3  25968  basellem9  27032  pnt2  27557  pnt  27558  siilem1  30830  sn-0ne2  42387
  Copyright terms: Public domain W3C validator