| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | breq12i 5119 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: eqbrtrrid 5146 breqtrdi 5151 ssenen 9121 adderpq 10916 mulerpq 10917 ltaddnq 10934 ege2le3 16063 ovolfiniun 25409 dvfsumlem3 25942 basellem9 27006 pnt2 27531 pnt 27532 siilem1 30787 omndaddr 33028 ogrpaddltrd 33040 sn-0ne2 42401 |
| Copyright terms: Public domain | W3C validator |