Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | breq12i 5083 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: eqbrtrrid 5110 breqtrdi 5115 ssenen 8938 adderpq 10712 mulerpq 10713 ltaddnq 10730 ege2le3 15799 ovolfiniun 24665 dvfsumlem3 25192 basellem9 26238 pnt2 26761 pnt 26762 siilem1 29213 omndaddr 31333 ogrpaddltrd 31345 sn-0ne2 40389 |
Copyright terms: Public domain | W3C validator |