| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | breq12i 5101 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: eqbrtrrid 5128 breqtrdi 5133 ssenen 9068 adderpq 10850 mulerpq 10851 ltaddnq 10868 ege2le3 15997 omndaddr 20008 ogrpaddltrd 20019 ovolfiniun 25400 dvfsumlem3 25933 basellem9 26997 pnt2 27522 pnt 27523 siilem1 30795 sn-0ne2 42389 |
| Copyright terms: Public domain | W3C validator |