Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | breq12i 5079 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: eqbrtrrid 5106 breqtrdi 5111 ssenen 8887 adderpq 10643 mulerpq 10644 ltaddnq 10661 ege2le3 15727 ovolfiniun 24570 dvfsumlem3 25097 basellem9 26143 pnt2 26666 pnt 26667 siilem1 29114 omndaddr 31235 ogrpaddltrd 31247 sn-0ne2 40310 |
Copyright terms: Public domain | W3C validator |