MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Visualization version   GIF version

Theorem 3brtr3g 5122
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 5098 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 218 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  eqbrtrrid  5125  breqtrdi  5130  ssenen  9064  adderpq  10847  mulerpq  10848  ltaddnq  10865  ege2le3  15997  omndaddr  20041  ogrpaddltrd  20052  ovolfiniun  25429  dvfsumlem3  25962  basellem9  27026  pnt2  27551  pnt  27552  siilem1  30831  sn-0ne2  42498
  Copyright terms: Public domain W3C validator