Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrd Structured version   Visualization version   GIF version

Theorem ogrpaddltrd 31976
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
ogrpaddltrd.6 (𝜑𝑋 < 𝑌)
Assertion
Ref Expression
ogrpaddltrd (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌))

Proof of Theorem ogrpaddltrd
StepHypRef Expression
1 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
2 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
3 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
4 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
5 ogrpaddltrd.6 . . . . 5 (𝜑𝑋 < 𝑌)
6 ogrpaddltrd.1 . . . . . . 7 (𝜑𝐺𝑉)
7 eqid 2733 . . . . . . . 8 (oppg𝐺) = (oppg𝐺)
8 ogrpaddlt.1 . . . . . . . 8 < = (lt‘𝐺)
97, 8oppglt 31871 . . . . . . 7 (𝐺𝑉< = (lt‘(oppg𝐺)))
106, 9syl 17 . . . . . 6 (𝜑< = (lt‘(oppg𝐺)))
1110breqd 5117 . . . . 5 (𝜑 → (𝑋 < 𝑌𝑋(lt‘(oppg𝐺))𝑌))
125, 11mpbid 231 . . . 4 (𝜑𝑋(lt‘(oppg𝐺))𝑌)
13 ogrpaddlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
147, 13oppgbas 19135 . . . . 5 𝐵 = (Base‘(oppg𝐺))
15 eqid 2733 . . . . 5 (lt‘(oppg𝐺)) = (lt‘(oppg𝐺))
16 eqid 2733 . . . . 5 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
1714, 15, 16ogrpaddlt 31974 . . . 4 (((oppg𝐺) ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(lt‘(oppg𝐺))𝑌) → (𝑋(+g‘(oppg𝐺))𝑍)(lt‘(oppg𝐺))(𝑌(+g‘(oppg𝐺))𝑍))
181, 2, 3, 4, 12, 17syl131anc 1384 . . 3 (𝜑 → (𝑋(+g‘(oppg𝐺))𝑍)(lt‘(oppg𝐺))(𝑌(+g‘(oppg𝐺))𝑍))
19 ogrpaddlt.2 . . . 4 + = (+g𝐺)
2019, 7, 16oppgplus 19132 . . 3 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2119, 7, 16oppgplus 19132 . . 3 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
2218, 20, 213brtr3g 5139 . 2 (𝜑 → (𝑍 + 𝑋)(lt‘(oppg𝐺))(𝑍 + 𝑌))
2310breqd 5117 . 2 (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg𝐺))(𝑍 + 𝑌)))
2422, 23mpbird 257 1 (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   class class class wbr 5106  cfv 6497  (class class class)co 7358  Basecbs 17088  +gcplusg 17138  ltcplt 18202  oppgcoppg 19128  oGrpcogrp 31955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-tpos 8158  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-dec 12624  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-ple 17158  df-0g 17328  df-plt 18224  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-oppg 19129  df-omnd 31956  df-ogrp 31957
This theorem is referenced by:  ogrpaddltrbid  31977  archiabllem2a  32079  archiabllem2c  32080
  Copyright terms: Public domain W3C validator