| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpaddltrd | Structured version Visualization version GIF version | ||
| Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| Ref | Expression |
|---|---|
| ogrpaddlt.0 | ⊢ 𝐵 = (Base‘𝐺) |
| ogrpaddlt.1 | ⊢ < = (lt‘𝐺) |
| ogrpaddlt.2 | ⊢ + = (+g‘𝐺) |
| ogrpaddltrd.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| ogrpaddltrd.2 | ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) |
| ogrpaddltrd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ogrpaddltrd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ogrpaddltrd.5 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ogrpaddltrd.6 | ⊢ (𝜑 → 𝑋 < 𝑌) |
| Ref | Expression |
|---|---|
| ogrpaddltrd | ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddltrd.2 | . . . 4 ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) | |
| 2 | ogrpaddltrd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ogrpaddltrd.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ogrpaddltrd.5 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ogrpaddltrd.6 | . . . . 5 ⊢ (𝜑 → 𝑋 < 𝑌) | |
| 6 | ogrpaddltrd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 8 | ogrpaddlt.1 | . . . . . . . 8 ⊢ < = (lt‘𝐺) | |
| 9 | 7, 8 | oppglt 19283 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → < = (lt‘(oppg‘𝐺))) |
| 10 | 6, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → < = (lt‘(oppg‘𝐺))) |
| 11 | 10 | breqd 5113 | . . . . 5 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 𝑋(lt‘(oppg‘𝐺))𝑌)) |
| 12 | 5, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋(lt‘(oppg‘𝐺))𝑌) |
| 13 | ogrpaddlt.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | 7, 13 | oppgbas 19266 | . . . . 5 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
| 15 | eqid 2729 | . . . . 5 ⊢ (lt‘(oppg‘𝐺)) = (lt‘(oppg‘𝐺)) | |
| 16 | eqid 2729 | . . . . 5 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
| 17 | 14, 15, 16 | ogrpaddlt 20053 | . . . 4 ⊢ (((oppg‘𝐺) ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(lt‘(oppg‘𝐺))𝑌) → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
| 18 | 1, 2, 3, 4, 12, 17 | syl131anc 1385 | . . 3 ⊢ (𝜑 → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
| 19 | ogrpaddlt.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 20 | 19, 7, 16 | oppgplus 19264 | . . 3 ⊢ (𝑋(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑋) |
| 21 | 19, 7, 16 | oppgplus 19264 | . . 3 ⊢ (𝑌(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑌) |
| 22 | 18, 20, 21 | 3brtr3g 5135 | . 2 ⊢ (𝜑 → (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌)) |
| 23 | 10 | breqd 5113 | . 2 ⊢ (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌))) |
| 24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 +gcplusg 17197 ltcplt 18250 oppgcoppg 19260 oGrpcogrp 20035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-dec 12628 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-ple 17217 df-0g 17381 df-plt 18270 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-oppg 19261 df-omnd 20036 df-ogrp 20037 |
| This theorem is referenced by: ogrpaddltrbid 20056 archiabllem2a 33164 archiabllem2c 33165 |
| Copyright terms: Public domain | W3C validator |