Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrd Structured version   Visualization version   GIF version

 Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.6 (𝜑𝑋 < 𝑌)
Assertion
Ref Expression
ogrpaddltrd (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌))

Proof of Theorem ogrpaddltrd
StepHypRef Expression
1 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
2 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
3 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
4 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
5 ogrpaddltrd.6 . . . . 5 (𝜑𝑋 < 𝑌)
6 ogrpaddltrd.1 . . . . . . 7 (𝜑𝐺𝑉)
7 eqid 2824 . . . . . . . 8 (oppg𝐺) = (oppg𝐺)
8 ogrpaddlt.1 . . . . . . . 8 < = (lt‘𝐺)
97, 8oppglt 30656 . . . . . . 7 (𝐺𝑉< = (lt‘(oppg𝐺)))
106, 9syl 17 . . . . . 6 (𝜑< = (lt‘(oppg𝐺)))
1110breqd 5063 . . . . 5 (𝜑 → (𝑋 < 𝑌𝑋(lt‘(oppg𝐺))𝑌))
125, 11mpbid 235 . . . 4 (𝜑𝑋(lt‘(oppg𝐺))𝑌)
13 ogrpaddlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
147, 13oppgbas 18479 . . . . 5 𝐵 = (Base‘(oppg𝐺))
15 eqid 2824 . . . . 5 (lt‘(oppg𝐺)) = (lt‘(oppg𝐺))
16 eqid 2824 . . . . 5 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
1714, 15, 16ogrpaddlt 30754 . . . 4 (((oppg𝐺) ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(lt‘(oppg𝐺))𝑌) → (𝑋(+g‘(oppg𝐺))𝑍)(lt‘(oppg𝐺))(𝑌(+g‘(oppg𝐺))𝑍))
181, 2, 3, 4, 12, 17syl131anc 1380 . . 3 (𝜑 → (𝑋(+g‘(oppg𝐺))𝑍)(lt‘(oppg𝐺))(𝑌(+g‘(oppg𝐺))𝑍))
19 ogrpaddlt.2 . . . 4 + = (+g𝐺)
2019, 7, 16oppgplus 18477 . . 3 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2119, 7, 16oppgplus 18477 . . 3 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
2218, 20, 213brtr3g 5085 . 2 (𝜑 → (𝑍 + 𝑋)(lt‘(oppg𝐺))(𝑍 + 𝑌))
2310breqd 5063 . 2 (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg𝐺))(𝑍 + 𝑌)))
2422, 23mpbird 260 1 (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115   class class class wbr 5052  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  ltcplt 17551  oppgcoppg 18473  oGrpcogrp 30735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-dec 12096  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-ple 16585  df-0g 16715  df-plt 17568  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-oppg 18474  df-omnd 30736  df-ogrp 30737 This theorem is referenced by:  ogrpaddltrbid  30757  archiabllem2a  30859  archiabllem2c  30860
 Copyright terms: Public domain W3C validator