| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpaddltrd | Structured version Visualization version GIF version | ||
| Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| Ref | Expression |
|---|---|
| ogrpaddlt.0 | ⊢ 𝐵 = (Base‘𝐺) |
| ogrpaddlt.1 | ⊢ < = (lt‘𝐺) |
| ogrpaddlt.2 | ⊢ + = (+g‘𝐺) |
| ogrpaddltrd.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| ogrpaddltrd.2 | ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) |
| ogrpaddltrd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ogrpaddltrd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ogrpaddltrd.5 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| ogrpaddltrd.6 | ⊢ (𝜑 → 𝑋 < 𝑌) |
| Ref | Expression |
|---|---|
| ogrpaddltrd | ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddltrd.2 | . . . 4 ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) | |
| 2 | ogrpaddltrd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ogrpaddltrd.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ogrpaddltrd.5 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ogrpaddltrd.6 | . . . . 5 ⊢ (𝜑 → 𝑋 < 𝑌) | |
| 6 | ogrpaddltrd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | eqid 2736 | . . . . . . . 8 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 8 | ogrpaddlt.1 | . . . . . . . 8 ⊢ < = (lt‘𝐺) | |
| 9 | 7, 8 | oppglt 32948 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → < = (lt‘(oppg‘𝐺))) |
| 10 | 6, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → < = (lt‘(oppg‘𝐺))) |
| 11 | 10 | breqd 5135 | . . . . 5 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 𝑋(lt‘(oppg‘𝐺))𝑌)) |
| 12 | 5, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋(lt‘(oppg‘𝐺))𝑌) |
| 13 | ogrpaddlt.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | 7, 13 | oppgbas 19339 | . . . . 5 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
| 15 | eqid 2736 | . . . . 5 ⊢ (lt‘(oppg‘𝐺)) = (lt‘(oppg‘𝐺)) | |
| 16 | eqid 2736 | . . . . 5 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
| 17 | 14, 15, 16 | ogrpaddlt 33090 | . . . 4 ⊢ (((oppg‘𝐺) ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(lt‘(oppg‘𝐺))𝑌) → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
| 18 | 1, 2, 3, 4, 12, 17 | syl131anc 1385 | . . 3 ⊢ (𝜑 → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
| 19 | ogrpaddlt.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 20 | 19, 7, 16 | oppgplus 19337 | . . 3 ⊢ (𝑋(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑋) |
| 21 | 19, 7, 16 | oppgplus 19337 | . . 3 ⊢ (𝑌(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑌) |
| 22 | 18, 20, 21 | 3brtr3g 5157 | . 2 ⊢ (𝜑 → (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌)) |
| 23 | 10 | breqd 5135 | . 2 ⊢ (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌))) |
| 24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 ltcplt 18325 oppgcoppg 19333 oGrpcogrp 33071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-ple 17296 df-0g 17460 df-plt 18345 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-oppg 19334 df-omnd 33072 df-ogrp 33073 |
| This theorem is referenced by: ogrpaddltrbid 33093 archiabllem2a 33197 archiabllem2c 33198 |
| Copyright terms: Public domain | W3C validator |