Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpaddltrd | Structured version Visualization version GIF version |
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
Ref | Expression |
---|---|
ogrpaddlt.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpaddlt.1 | ⊢ < = (lt‘𝐺) |
ogrpaddlt.2 | ⊢ + = (+g‘𝐺) |
ogrpaddltrd.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
ogrpaddltrd.2 | ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) |
ogrpaddltrd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ogrpaddltrd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ogrpaddltrd.5 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ogrpaddltrd.6 | ⊢ (𝜑 → 𝑋 < 𝑌) |
Ref | Expression |
---|---|
ogrpaddltrd | ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpaddltrd.2 | . . . 4 ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) | |
2 | ogrpaddltrd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ogrpaddltrd.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ogrpaddltrd.5 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | ogrpaddltrd.6 | . . . . 5 ⊢ (𝜑 → 𝑋 < 𝑌) | |
6 | ogrpaddltrd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | eqid 2738 | . . . . . . . 8 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
8 | ogrpaddlt.1 | . . . . . . . 8 ⊢ < = (lt‘𝐺) | |
9 | 7, 8 | oppglt 31142 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → < = (lt‘(oppg‘𝐺))) |
10 | 6, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → < = (lt‘(oppg‘𝐺))) |
11 | 10 | breqd 5081 | . . . . 5 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 𝑋(lt‘(oppg‘𝐺))𝑌)) |
12 | 5, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋(lt‘(oppg‘𝐺))𝑌) |
13 | ogrpaddlt.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
14 | 7, 13 | oppgbas 18871 | . . . . 5 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
15 | eqid 2738 | . . . . 5 ⊢ (lt‘(oppg‘𝐺)) = (lt‘(oppg‘𝐺)) | |
16 | eqid 2738 | . . . . 5 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
17 | 14, 15, 16 | ogrpaddlt 31245 | . . . 4 ⊢ (((oppg‘𝐺) ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(lt‘(oppg‘𝐺))𝑌) → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
18 | 1, 2, 3, 4, 12, 17 | syl131anc 1381 | . . 3 ⊢ (𝜑 → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
19 | ogrpaddlt.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
20 | 19, 7, 16 | oppgplus 18868 | . . 3 ⊢ (𝑋(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑋) |
21 | 19, 7, 16 | oppgplus 18868 | . . 3 ⊢ (𝑌(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑌) |
22 | 18, 20, 21 | 3brtr3g 5103 | . 2 ⊢ (𝜑 → (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌)) |
23 | 10 | breqd 5081 | . 2 ⊢ (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌))) |
24 | 22, 23 | mpbird 256 | 1 ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 ltcplt 17941 oppgcoppg 18864 oGrpcogrp 31226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-ple 16908 df-0g 17069 df-plt 17963 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-oppg 18865 df-omnd 31227 df-ogrp 31228 |
This theorem is referenced by: ogrpaddltrbid 31248 archiabllem2a 31350 archiabllem2c 31351 |
Copyright terms: Public domain | W3C validator |