![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpaddltrd | Structured version Visualization version GIF version |
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
Ref | Expression |
---|---|
ogrpaddlt.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpaddlt.1 | ⊢ < = (lt‘𝐺) |
ogrpaddlt.2 | ⊢ + = (+g‘𝐺) |
ogrpaddltrd.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
ogrpaddltrd.2 | ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) |
ogrpaddltrd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ogrpaddltrd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ogrpaddltrd.5 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ogrpaddltrd.6 | ⊢ (𝜑 → 𝑋 < 𝑌) |
Ref | Expression |
---|---|
ogrpaddltrd | ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpaddltrd.2 | . . . 4 ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) | |
2 | ogrpaddltrd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ogrpaddltrd.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ogrpaddltrd.5 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | ogrpaddltrd.6 | . . . . 5 ⊢ (𝜑 → 𝑋 < 𝑌) | |
6 | ogrpaddltrd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | eqid 2740 | . . . . . . . 8 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
8 | ogrpaddlt.1 | . . . . . . . 8 ⊢ < = (lt‘𝐺) | |
9 | 7, 8 | oppglt 32935 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → < = (lt‘(oppg‘𝐺))) |
10 | 6, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → < = (lt‘(oppg‘𝐺))) |
11 | 10 | breqd 5177 | . . . . 5 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 𝑋(lt‘(oppg‘𝐺))𝑌)) |
12 | 5, 11 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋(lt‘(oppg‘𝐺))𝑌) |
13 | ogrpaddlt.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
14 | 7, 13 | oppgbas 19392 | . . . . 5 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
15 | eqid 2740 | . . . . 5 ⊢ (lt‘(oppg‘𝐺)) = (lt‘(oppg‘𝐺)) | |
16 | eqid 2740 | . . . . 5 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
17 | 14, 15, 16 | ogrpaddlt 33067 | . . . 4 ⊢ (((oppg‘𝐺) ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(lt‘(oppg‘𝐺))𝑌) → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
18 | 1, 2, 3, 4, 12, 17 | syl131anc 1383 | . . 3 ⊢ (𝜑 → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
19 | ogrpaddlt.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
20 | 19, 7, 16 | oppgplus 19389 | . . 3 ⊢ (𝑋(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑋) |
21 | 19, 7, 16 | oppgplus 19389 | . . 3 ⊢ (𝑌(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑌) |
22 | 18, 20, 21 | 3brtr3g 5199 | . 2 ⊢ (𝜑 → (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌)) |
23 | 10 | breqd 5177 | . 2 ⊢ (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌))) |
24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 ltcplt 18378 oppgcoppg 19385 oGrpcogrp 33048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-ple 17331 df-0g 17501 df-plt 18400 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-oppg 19386 df-omnd 33049 df-ogrp 33050 |
This theorem is referenced by: ogrpaddltrbid 33070 archiabllem2a 33174 archiabllem2c 33175 |
Copyright terms: Public domain | W3C validator |