![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpaddltrd | Structured version Visualization version GIF version |
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
Ref | Expression |
---|---|
ogrpaddlt.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpaddlt.1 | ⊢ < = (lt‘𝐺) |
ogrpaddlt.2 | ⊢ + = (+g‘𝐺) |
ogrpaddltrd.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
ogrpaddltrd.2 | ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) |
ogrpaddltrd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ogrpaddltrd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ogrpaddltrd.5 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ogrpaddltrd.6 | ⊢ (𝜑 → 𝑋 < 𝑌) |
Ref | Expression |
---|---|
ogrpaddltrd | ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpaddltrd.2 | . . . 4 ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) | |
2 | ogrpaddltrd.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ogrpaddltrd.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ogrpaddltrd.5 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | ogrpaddltrd.6 | . . . . 5 ⊢ (𝜑 → 𝑋 < 𝑌) | |
6 | ogrpaddltrd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | eqid 2727 | . . . . . . . 8 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
8 | ogrpaddlt.1 | . . . . . . . 8 ⊢ < = (lt‘𝐺) | |
9 | 7, 8 | oppglt 32658 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → < = (lt‘(oppg‘𝐺))) |
10 | 6, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → < = (lt‘(oppg‘𝐺))) |
11 | 10 | breqd 5153 | . . . . 5 ⊢ (𝜑 → (𝑋 < 𝑌 ↔ 𝑋(lt‘(oppg‘𝐺))𝑌)) |
12 | 5, 11 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑋(lt‘(oppg‘𝐺))𝑌) |
13 | ogrpaddlt.0 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
14 | 7, 13 | oppgbas 19287 | . . . . 5 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
15 | eqid 2727 | . . . . 5 ⊢ (lt‘(oppg‘𝐺)) = (lt‘(oppg‘𝐺)) | |
16 | eqid 2727 | . . . . 5 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
17 | 14, 15, 16 | ogrpaddlt 32762 | . . . 4 ⊢ (((oppg‘𝐺) ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(lt‘(oppg‘𝐺))𝑌) → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
18 | 1, 2, 3, 4, 12, 17 | syl131anc 1381 | . . 3 ⊢ (𝜑 → (𝑋(+g‘(oppg‘𝐺))𝑍)(lt‘(oppg‘𝐺))(𝑌(+g‘(oppg‘𝐺))𝑍)) |
19 | ogrpaddlt.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
20 | 19, 7, 16 | oppgplus 19284 | . . 3 ⊢ (𝑋(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑋) |
21 | 19, 7, 16 | oppgplus 19284 | . . 3 ⊢ (𝑌(+g‘(oppg‘𝐺))𝑍) = (𝑍 + 𝑌) |
22 | 18, 20, 21 | 3brtr3g 5175 | . 2 ⊢ (𝜑 → (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌)) |
23 | 10 | breqd 5153 | . 2 ⊢ (𝜑 → ((𝑍 + 𝑋) < (𝑍 + 𝑌) ↔ (𝑍 + 𝑋)(lt‘(oppg‘𝐺))(𝑍 + 𝑌))) |
24 | 22, 23 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 Basecbs 17165 +gcplusg 17218 ltcplt 18285 oppgcoppg 19280 oGrpcogrp 32743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-dec 12694 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-plusg 17231 df-ple 17238 df-0g 17408 df-plt 18307 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-oppg 19281 df-omnd 32744 df-ogrp 32745 |
This theorem is referenced by: ogrpaddltrbid 32765 archiabllem2a 32867 archiabllem2c 32868 |
Copyright terms: Public domain | W3C validator |