| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | breq12i 5098 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: eqbrtrid 5124 enrefnn 8968 limensuci 9066 infensuc 9068 djuen 10061 djudom1 10074 rlimneg 15554 isumsup2 15753 crth 16689 4sqlem6 16855 gzrngunit 21370 matgsum 22352 ovolunlem1a 25424 ovolfiniun 25429 ioombl1lem1 25486 ioombl1lem4 25489 iblss 25733 itgle 25738 dvfsumlem3 25962 emcllem6 26938 gausslemma2dlem0f 27299 gausslemma2dlem0g 27300 pntpbnd1a 27523 ostth2lem4 27574 noinfbnd2lem1 27669 omsmon 34311 itg2gt0cn 37714 dalem-cly 39769 dalem10 39771 fourierdlem103 46306 fourierdlem104 46307 |
| Copyright terms: Public domain | W3C validator |