MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr4g Structured version   Visualization version   GIF version

Theorem 3brtr4g 5182
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1 (𝜑𝐴𝑅𝐵)
3brtr4g.2 𝐶 = 𝐴
3brtr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3brtr4g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr4g.2 . . 3 𝐶 = 𝐴
3 3brtr4g.3 . . 3 𝐷 = 𝐵
42, 3breq12i 5157 . 2 (𝐶𝑅𝐷𝐴𝑅𝐵)
51, 4sylibr 234 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149
This theorem is referenced by:  eqbrtrid  5183  enrefnn  9086  enpr2dOLD  9089  limensuci  9192  infensuc  9194  djuen  10208  djudom1  10221  rlimneg  15680  isumsup2  15879  crth  16812  4sqlem6  16977  gzrngunit  21469  matgsum  22459  ovolunlem1a  25545  ovolfiniun  25550  ioombl1lem1  25607  ioombl1lem4  25610  iblss  25855  itgle  25860  dvfsumlem3  26084  emcllem6  27059  gausslemma2dlem0f  27420  gausslemma2dlem0g  27421  pntpbnd1a  27644  ostth2lem4  27695  noinfbnd2lem1  27790  omsmon  34280  itg2gt0cn  37662  dalem-cly  39654  dalem10  39656  fourierdlem103  46165  fourierdlem104  46166
  Copyright terms: Public domain W3C validator