| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | breq12i 5133 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: eqbrtrid 5159 enrefnn 9066 enpr2dOLD 9069 limensuci 9172 infensuc 9174 djuen 10189 djudom1 10202 rlimneg 15668 isumsup2 15867 crth 16802 4sqlem6 16968 gzrngunit 21406 matgsum 22380 ovolunlem1a 25454 ovolfiniun 25459 ioombl1lem1 25516 ioombl1lem4 25519 iblss 25763 itgle 25768 dvfsumlem3 25992 emcllem6 26968 gausslemma2dlem0f 27329 gausslemma2dlem0g 27330 pntpbnd1a 27553 ostth2lem4 27604 noinfbnd2lem1 27699 omsmon 34335 itg2gt0cn 37704 dalem-cly 39695 dalem10 39697 fourierdlem103 46205 fourierdlem104 46206 |
| Copyright terms: Public domain | W3C validator |