![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | breq12i 5175 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: eqbrtrid 5201 enrefnn 9113 enpr2dOLD 9116 limensuci 9219 infensuc 9221 djuen 10239 djudom1 10252 rlimneg 15695 isumsup2 15894 crth 16825 4sqlem6 16990 gzrngunit 21474 matgsum 22464 ovolunlem1a 25550 ovolfiniun 25555 ioombl1lem1 25612 ioombl1lem4 25615 iblss 25860 itgle 25865 dvfsumlem3 26089 emcllem6 27062 gausslemma2dlem0f 27423 gausslemma2dlem0g 27424 pntpbnd1a 27647 ostth2lem4 27698 noinfbnd2lem1 27793 omsmon 34263 itg2gt0cn 37635 dalem-cly 39628 dalem10 39630 fourierdlem103 46130 fourierdlem104 46131 |
Copyright terms: Public domain | W3C validator |