| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | breq12i 5101 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: eqbrtrid 5127 enrefnn 8972 limensuci 9070 infensuc 9072 djuen 10064 djudom1 10077 rlimneg 15554 isumsup2 15753 crth 16689 4sqlem6 16855 gzrngunit 21340 matgsum 22322 ovolunlem1a 25395 ovolfiniun 25400 ioombl1lem1 25457 ioombl1lem4 25460 iblss 25704 itgle 25709 dvfsumlem3 25933 emcllem6 26909 gausslemma2dlem0f 27270 gausslemma2dlem0g 27271 pntpbnd1a 27494 ostth2lem4 27545 noinfbnd2lem1 27640 omsmon 34272 itg2gt0cn 37665 dalem-cly 39660 dalem10 39662 fourierdlem103 46200 fourierdlem104 46201 |
| Copyright terms: Public domain | W3C validator |