![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | breq12i 4971 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
5 | 1, 4 | sylibr 235 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 class class class wbr 4962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 |
This theorem is referenced by: eqbrtrid 4997 limensuci 8540 infensuc 8542 djuen 9441 djudom1 9454 rlimneg 14837 isumsup2 15034 crth 15944 4sqlem6 16108 gzrngunit 20293 matgsum 20730 ovolunlem1a 23780 ovolfiniun 23785 ioombl1lem1 23842 ioombl1lem4 23845 iblss 24088 itgle 24093 dvfsumlem3 24308 emcllem6 25260 gausslemma2dlem0f 25619 gausslemma2dlem0g 25620 pntpbnd1a 25843 ostth2lem4 25894 omsmon 31173 itg2gt0cn 34478 dalem-cly 36338 dalem10 36340 enpr2d 40051 fourierdlem103 42036 fourierdlem104 42037 |
Copyright terms: Public domain | W3C validator |