MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr4g Structured version   Visualization version   GIF version

Theorem 3brtr4g 5126
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1 (𝜑𝐴𝑅𝐵)
3brtr4g.2 𝐶 = 𝐴
3brtr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3brtr4g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr4g.2 . . 3 𝐶 = 𝐴
3 3brtr4g.3 . . 3 𝐷 = 𝐵
42, 3breq12i 5101 . 2 (𝐶𝑅𝐷𝐴𝑅𝐵)
51, 4sylibr 234 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093
This theorem is referenced by:  eqbrtrid  5127  enrefnn  8972  limensuci  9070  infensuc  9072  djuen  10064  djudom1  10077  rlimneg  15554  isumsup2  15753  crth  16689  4sqlem6  16855  gzrngunit  21340  matgsum  22322  ovolunlem1a  25395  ovolfiniun  25400  ioombl1lem1  25457  ioombl1lem4  25460  iblss  25704  itgle  25709  dvfsumlem3  25933  emcllem6  26909  gausslemma2dlem0f  27270  gausslemma2dlem0g  27271  pntpbnd1a  27494  ostth2lem4  27545  noinfbnd2lem1  27640  omsmon  34272  itg2gt0cn  37665  dalem-cly  39660  dalem10  39662  fourierdlem103  46200  fourierdlem104  46201
  Copyright terms: Public domain W3C validator