| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | breq12i 5116 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: eqbrtrid 5142 enrefnn 9018 enpr2dOLD 9021 limensuci 9117 infensuc 9119 djuen 10123 djudom1 10136 rlimneg 15613 isumsup2 15812 crth 16748 4sqlem6 16914 gzrngunit 21350 matgsum 22324 ovolunlem1a 25397 ovolfiniun 25402 ioombl1lem1 25459 ioombl1lem4 25462 iblss 25706 itgle 25711 dvfsumlem3 25935 emcllem6 26911 gausslemma2dlem0f 27272 gausslemma2dlem0g 27273 pntpbnd1a 27496 ostth2lem4 27547 noinfbnd2lem1 27642 omsmon 34289 itg2gt0cn 37669 dalem-cly 39665 dalem10 39667 fourierdlem103 46207 fourierdlem104 46208 |
| Copyright terms: Public domain | W3C validator |