| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| Ref | Expression |
|---|---|
| 3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | breq12i 5111 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: eqbrtrid 5137 enrefnn 8995 enpr2dOLD 8998 limensuci 9094 infensuc 9096 djuen 10099 djudom1 10112 rlimneg 15589 isumsup2 15788 crth 16724 4sqlem6 16890 gzrngunit 21375 matgsum 22357 ovolunlem1a 25430 ovolfiniun 25435 ioombl1lem1 25492 ioombl1lem4 25495 iblss 25739 itgle 25744 dvfsumlem3 25968 emcllem6 26944 gausslemma2dlem0f 27305 gausslemma2dlem0g 27306 pntpbnd1a 27529 ostth2lem4 27580 noinfbnd2lem1 27675 omsmon 34282 itg2gt0cn 37662 dalem-cly 39658 dalem10 39660 fourierdlem103 46200 fourierdlem104 46201 |
| Copyright terms: Public domain | W3C validator |