![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddnq | Structured version Visualization version GIF version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | oveq1 7455 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦)) | |
3 | 1, 2 | breq12d 5179 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦))) |
4 | oveq2 7456 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵)) | |
5 | 4 | breq2d 5178 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵))) |
6 | 1lt2nq 11042 | . . . . . . . 8 ⊢ 1Q <Q (1Q +Q 1Q) | |
7 | ltmnq 11041 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))) | |
8 | 6, 7 | mpbii 233 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))) |
9 | mulidnq 11032 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) = 𝑦) | |
10 | distrnq 11030 | . . . . . . . 8 ⊢ (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) | |
11 | 9, 9 | oveq12d 7466 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦)) |
12 | 10, 11 | eqtrid 2792 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦)) |
13 | 8, 9, 12 | 3brtr3d 5197 | . . . . . 6 ⊢ (𝑦 ∈ Q → 𝑦 <Q (𝑦 +Q 𝑦)) |
14 | ltanq 11040 | . . . . . 6 ⊢ (𝑥 ∈ Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) | |
15 | 13, 14 | imbitrid 244 | . . . . 5 ⊢ (𝑥 ∈ Q → (𝑦 ∈ Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) |
16 | 15 | imp 406 | . . . 4 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))) |
17 | addcomnq 11020 | . . . 4 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
18 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
20 | addcomnq 11020 | . . . . 5 ⊢ (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟) | |
21 | addassnq 11027 | . . . . 5 ⊢ ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)) | |
22 | 18, 19, 19, 20, 21 | caov12 7678 | . . . 4 ⊢ (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦)) |
23 | 16, 17, 22 | 3brtr3g 5199 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))) |
24 | ltanq 11040 | . . . 4 ⊢ (𝑦 ∈ Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) |
26 | 23, 25 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
27 | 3, 5, 26 | vtocl2ga 3590 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 Qcnq 10921 1Qc1q 10922 +Q cplq 10924 ·Q cmq 10925 <Q cltq 10927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-ltnq 10987 |
This theorem is referenced by: ltexnq 11044 nsmallnq 11046 ltbtwnnq 11047 prlem934 11102 ltaddpr 11103 ltexprlem2 11106 ltexprlem4 11108 |
Copyright terms: Public domain | W3C validator |