Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltaddnq | Structured version Visualization version GIF version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | oveq1 7275 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦)) | |
3 | 1, 2 | breq12d 5091 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦))) |
4 | oveq2 7276 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵)) | |
5 | 4 | breq2d 5090 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵))) |
6 | 1lt2nq 10713 | . . . . . . . 8 ⊢ 1Q <Q (1Q +Q 1Q) | |
7 | ltmnq 10712 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))) | |
8 | 6, 7 | mpbii 232 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))) |
9 | mulidnq 10703 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) = 𝑦) | |
10 | distrnq 10701 | . . . . . . . 8 ⊢ (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) | |
11 | 9, 9 | oveq12d 7286 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦)) |
12 | 10, 11 | eqtrid 2791 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦)) |
13 | 8, 9, 12 | 3brtr3d 5109 | . . . . . 6 ⊢ (𝑦 ∈ Q → 𝑦 <Q (𝑦 +Q 𝑦)) |
14 | ltanq 10711 | . . . . . 6 ⊢ (𝑥 ∈ Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) | |
15 | 13, 14 | syl5ib 243 | . . . . 5 ⊢ (𝑥 ∈ Q → (𝑦 ∈ Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) |
16 | 15 | imp 406 | . . . 4 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))) |
17 | addcomnq 10691 | . . . 4 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
18 | vex 3434 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | vex 3434 | . . . . 5 ⊢ 𝑦 ∈ V | |
20 | addcomnq 10691 | . . . . 5 ⊢ (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟) | |
21 | addassnq 10698 | . . . . 5 ⊢ ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)) | |
22 | 18, 19, 19, 20, 21 | caov12 7491 | . . . 4 ⊢ (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦)) |
23 | 16, 17, 22 | 3brtr3g 5111 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))) |
24 | ltanq 10711 | . . . 4 ⊢ (𝑦 ∈ Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) |
26 | 23, 25 | mpbird 256 | . 2 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
27 | 3, 5, 26 | vtocl2ga 3512 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 Qcnq 10592 1Qc1q 10593 +Q cplq 10595 ·Q cmq 10596 <Q cltq 10598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-mq 10655 df-1nq 10656 df-ltnq 10658 |
This theorem is referenced by: ltexnq 10715 nsmallnq 10717 ltbtwnnq 10718 prlem934 10773 ltaddpr 10774 ltexprlem2 10777 ltexprlem4 10779 |
Copyright terms: Public domain | W3C validator |