| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddnq | Structured version Visualization version GIF version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 2 | oveq1 7412 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦)) | |
| 3 | 1, 2 | breq12d 5132 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦))) |
| 4 | oveq2 7413 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵)) | |
| 5 | 4 | breq2d 5131 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵))) |
| 6 | 1lt2nq 10987 | . . . . . . . 8 ⊢ 1Q <Q (1Q +Q 1Q) | |
| 7 | ltmnq 10986 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))) | |
| 8 | 6, 7 | mpbii 233 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))) |
| 9 | mulidnq 10977 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) = 𝑦) | |
| 10 | distrnq 10975 | . . . . . . . 8 ⊢ (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) | |
| 11 | 9, 9 | oveq12d 7423 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦)) |
| 12 | 10, 11 | eqtrid 2782 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦)) |
| 13 | 8, 9, 12 | 3brtr3d 5150 | . . . . . 6 ⊢ (𝑦 ∈ Q → 𝑦 <Q (𝑦 +Q 𝑦)) |
| 14 | ltanq 10985 | . . . . . 6 ⊢ (𝑥 ∈ Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) | |
| 15 | 13, 14 | imbitrid 244 | . . . . 5 ⊢ (𝑥 ∈ Q → (𝑦 ∈ Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) |
| 16 | 15 | imp 406 | . . . 4 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))) |
| 17 | addcomnq 10965 | . . . 4 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
| 18 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 19 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 20 | addcomnq 10965 | . . . . 5 ⊢ (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟) | |
| 21 | addassnq 10972 | . . . . 5 ⊢ ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)) | |
| 22 | 18, 19, 19, 20, 21 | caov12 7635 | . . . 4 ⊢ (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦)) |
| 23 | 16, 17, 22 | 3brtr3g 5152 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))) |
| 24 | ltanq 10985 | . . . 4 ⊢ (𝑦 ∈ Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) |
| 26 | 23, 25 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
| 27 | 3, 5, 26 | vtocl2ga 3557 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 Qcnq 10866 1Qc1q 10867 +Q cplq 10869 ·Q cmq 10870 <Q cltq 10872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-ltnq 10932 |
| This theorem is referenced by: ltexnq 10989 nsmallnq 10991 ltbtwnnq 10992 prlem934 11047 ltaddpr 11048 ltexprlem2 11051 ltexprlem4 11053 |
| Copyright terms: Public domain | W3C validator |