| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddnq | Structured version Visualization version GIF version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 2 | oveq1 7394 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦)) | |
| 3 | 1, 2 | breq12d 5120 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦))) |
| 4 | oveq2 7395 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵)) | |
| 5 | 4 | breq2d 5119 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵))) |
| 6 | 1lt2nq 10926 | . . . . . . . 8 ⊢ 1Q <Q (1Q +Q 1Q) | |
| 7 | ltmnq 10925 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))) | |
| 8 | 6, 7 | mpbii 233 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))) |
| 9 | mulidnq 10916 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) = 𝑦) | |
| 10 | distrnq 10914 | . . . . . . . 8 ⊢ (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) | |
| 11 | 9, 9 | oveq12d 7405 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦)) |
| 12 | 10, 11 | eqtrid 2776 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦)) |
| 13 | 8, 9, 12 | 3brtr3d 5138 | . . . . . 6 ⊢ (𝑦 ∈ Q → 𝑦 <Q (𝑦 +Q 𝑦)) |
| 14 | ltanq 10924 | . . . . . 6 ⊢ (𝑥 ∈ Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) | |
| 15 | 13, 14 | imbitrid 244 | . . . . 5 ⊢ (𝑥 ∈ Q → (𝑦 ∈ Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) |
| 16 | 15 | imp 406 | . . . 4 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))) |
| 17 | addcomnq 10904 | . . . 4 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
| 18 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 19 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 20 | addcomnq 10904 | . . . . 5 ⊢ (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟) | |
| 21 | addassnq 10911 | . . . . 5 ⊢ ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)) | |
| 22 | 18, 19, 19, 20, 21 | caov12 7617 | . . . 4 ⊢ (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦)) |
| 23 | 16, 17, 22 | 3brtr3g 5140 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))) |
| 24 | ltanq 10924 | . . . 4 ⊢ (𝑦 ∈ Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) |
| 26 | 23, 25 | mpbird 257 | . 2 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
| 27 | 3, 5, 26 | vtocl2ga 3544 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 Qcnq 10805 1Qc1q 10806 +Q cplq 10808 ·Q cmq 10809 <Q cltq 10811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-ltnq 10871 |
| This theorem is referenced by: ltexnq 10928 nsmallnq 10930 ltbtwnnq 10931 prlem934 10986 ltaddpr 10987 ltexprlem2 10990 ltexprlem4 10992 |
| Copyright terms: Public domain | W3C validator |