MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddnq Structured version   Visualization version   GIF version

Theorem ltaddnq 10776
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq1 7314 . . 3 (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦))
31, 2breq12d 5094 . 2 (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦)))
4 oveq2 7315 . . 3 (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵))
54breq2d 5093 . 2 (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵)))
6 1lt2nq 10775 . . . . . . . 8 1Q <Q (1Q +Q 1Q)
7 ltmnq 10774 . . . . . . . 8 (𝑦Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))))
86, 7mpbii 232 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))
9 mulidnq 10765 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
10 distrnq 10763 . . . . . . . 8 (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q))
119, 9oveq12d 7325 . . . . . . . 8 (𝑦Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦))
1210, 11eqtrid 2788 . . . . . . 7 (𝑦Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦))
138, 9, 123brtr3d 5112 . . . . . 6 (𝑦Q𝑦 <Q (𝑦 +Q 𝑦))
14 ltanq 10773 . . . . . 6 (𝑥Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1513, 14syl5ib 244 . . . . 5 (𝑥Q → (𝑦Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1615imp 408 . . . 4 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))
17 addcomnq 10753 . . . 4 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
18 vex 3441 . . . . 5 𝑥 ∈ V
19 vex 3441 . . . . 5 𝑦 ∈ V
20 addcomnq 10753 . . . . 5 (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)
21 addassnq 10760 . . . . 5 ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))
2218, 19, 19, 20, 21caov12 7532 . . . 4 (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦))
2316, 17, 223brtr3g 5114 . . 3 ((𝑥Q𝑦Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))
24 ltanq 10773 . . . 4 (𝑦Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2524adantl 483 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2623, 25mpbird 257 . 2 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
273, 5, 26vtocl2ga 3519 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  (class class class)co 7307  Qcnq 10654  1Qc1q 10655   +Q cplq 10657   ·Q cmq 10658   <Q cltq 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-omul 8333  df-er 8529  df-ni 10674  df-pli 10675  df-mi 10676  df-lti 10677  df-plpq 10710  df-mpq 10711  df-ltpq 10712  df-enq 10713  df-nq 10714  df-erq 10715  df-plq 10716  df-mq 10717  df-1nq 10718  df-ltnq 10720
This theorem is referenced by:  ltexnq  10777  nsmallnq  10779  ltbtwnnq  10780  prlem934  10835  ltaddpr  10836  ltexprlem2  10839  ltexprlem4  10841
  Copyright terms: Public domain W3C validator