MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddnq Structured version   Visualization version   GIF version

Theorem ltaddnq 10385
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq1 7142 . . 3 (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦))
31, 2breq12d 5043 . 2 (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦)))
4 oveq2 7143 . . 3 (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵))
54breq2d 5042 . 2 (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵)))
6 1lt2nq 10384 . . . . . . . 8 1Q <Q (1Q +Q 1Q)
7 ltmnq 10383 . . . . . . . 8 (𝑦Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))))
86, 7mpbii 236 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))
9 mulidnq 10374 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
10 distrnq 10372 . . . . . . . 8 (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q))
119, 9oveq12d 7153 . . . . . . . 8 (𝑦Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦))
1210, 11syl5eq 2845 . . . . . . 7 (𝑦Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦))
138, 9, 123brtr3d 5061 . . . . . 6 (𝑦Q𝑦 <Q (𝑦 +Q 𝑦))
14 ltanq 10382 . . . . . 6 (𝑥Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1513, 14syl5ib 247 . . . . 5 (𝑥Q → (𝑦Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1615imp 410 . . . 4 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))
17 addcomnq 10362 . . . 4 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
18 vex 3444 . . . . 5 𝑥 ∈ V
19 vex 3444 . . . . 5 𝑦 ∈ V
20 addcomnq 10362 . . . . 5 (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)
21 addassnq 10369 . . . . 5 ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))
2218, 19, 19, 20, 21caov12 7356 . . . 4 (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦))
2316, 17, 223brtr3g 5063 . . 3 ((𝑥Q𝑦Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))
24 ltanq 10382 . . . 4 (𝑦Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2524adantl 485 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2623, 25mpbird 260 . 2 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
273, 5, 26vtocl2ga 3523 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  Qcnq 10263  1Qc1q 10264   +Q cplq 10266   ·Q cmq 10267   <Q cltq 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-ltnq 10329
This theorem is referenced by:  ltexnq  10386  nsmallnq  10388  ltbtwnnq  10389  prlem934  10444  ltaddpr  10445  ltexprlem2  10448  ltexprlem4  10450
  Copyright terms: Public domain W3C validator