MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddnq Structured version   Visualization version   GIF version

Theorem ltaddnq 10729
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq1 7276 . . 3 (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦))
31, 2breq12d 5092 . 2 (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦)))
4 oveq2 7277 . . 3 (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵))
54breq2d 5091 . 2 (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵)))
6 1lt2nq 10728 . . . . . . . 8 1Q <Q (1Q +Q 1Q)
7 ltmnq 10727 . . . . . . . 8 (𝑦Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))))
86, 7mpbii 232 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))
9 mulidnq 10718 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
10 distrnq 10716 . . . . . . . 8 (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q))
119, 9oveq12d 7287 . . . . . . . 8 (𝑦Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦))
1210, 11eqtrid 2792 . . . . . . 7 (𝑦Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦))
138, 9, 123brtr3d 5110 . . . . . 6 (𝑦Q𝑦 <Q (𝑦 +Q 𝑦))
14 ltanq 10726 . . . . . 6 (𝑥Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1513, 14syl5ib 243 . . . . 5 (𝑥Q → (𝑦Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1615imp 407 . . . 4 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))
17 addcomnq 10706 . . . 4 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
18 vex 3435 . . . . 5 𝑥 ∈ V
19 vex 3435 . . . . 5 𝑦 ∈ V
20 addcomnq 10706 . . . . 5 (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)
21 addassnq 10713 . . . . 5 ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))
2218, 19, 19, 20, 21caov12 7492 . . . 4 (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦))
2316, 17, 223brtr3g 5112 . . 3 ((𝑥Q𝑦Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))
24 ltanq 10726 . . . 4 (𝑦Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2524adantl 482 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2623, 25mpbird 256 . 2 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
273, 5, 26vtocl2ga 3513 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  (class class class)co 7269  Qcnq 10607  1Qc1q 10608   +Q cplq 10610   ·Q cmq 10611   <Q cltq 10613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-omul 8291  df-er 8479  df-ni 10627  df-pli 10628  df-mi 10629  df-lti 10630  df-plpq 10663  df-mpq 10664  df-ltpq 10665  df-enq 10666  df-nq 10667  df-erq 10668  df-plq 10669  df-mq 10670  df-1nq 10671  df-ltnq 10673
This theorem is referenced by:  ltexnq  10730  nsmallnq  10732  ltbtwnnq  10733  prlem934  10788  ltaddpr  10789  ltexprlem2  10792  ltexprlem4  10794
  Copyright terms: Public domain W3C validator