MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpq Structured version   Visualization version   GIF version

Theorem adderpq 10994
Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpq (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))

Proof of Theorem adderpq
StepHypRef Expression
1 nqercl 10969 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10969 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 addpqnq 10976 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
5 enqer 10959 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10970 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 480 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10963 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 adderpqlem 10992 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
12113exp 1118 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))))
1413imp 406 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
158, 14mpbid 232 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))
16 nqerrel 10970 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 481 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10963 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 adderpqlem 10992 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
21203exp 1118 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))))
2310, 22mpan9 506 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
2417, 23mpbid 232 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))
25 addcompq 10988 . . . . . 6 (𝐵 +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ 𝐵)
26 addcompq 10988 . . . . . 6 (([Q]‘𝐵) +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5181 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8760 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
29 addpqf 10982 . . . . . 6 +pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7561 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
3129fovcl 7561 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 596 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10973 . . . . 5 (((𝐴 +pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3528, 34mpbid 232 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
364, 35eqtr4d 2778 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
37 0nnq 10962 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10968 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6748 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2831 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6942 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 331 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2824 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 327 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2831 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6942 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 331 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2824 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 327 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 613 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 addnqf 10986 . . . . . 6 +Q :(Q × Q)⟶Q
5453fdmi 6748 . . . . 5 dom +Q = (Q × Q)
5554ndmov 7617 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 159 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5723 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2831 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 323 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6748 . . . . . . 7 dom +pQ = ((N × N) × (N × N))
6160ndmov 7617 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ∅)
6261eleq1d 2824 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 327 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 +pQ 𝐵) ∈ dom [Q])
64 ndmfv 6942 . . . 4 (¬ (𝐴 +pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6656, 65eqtr4d 2778 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
6736, 66pm2.61i 182 1 (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431   Er wer 8741  Ncnpi 10882   +pQ cplpq 10886   ~Q ceq 10889  Qcnq 10890  [Q]cerq 10892   +Q cplq 10893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-1nq 10954
This theorem is referenced by:  addassnq  10996  distrnq  10999  ltexnq  11013
  Copyright terms: Public domain W3C validator