MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpq Structured version   Visualization version   GIF version

Theorem adderpq 10953
Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpq (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))

Proof of Theorem adderpq
StepHypRef Expression
1 nqercl 10928 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10928 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 addpqnq 10935 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
41, 2, 3syl2an 595 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
5 enqer 10918 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10929 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 480 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10922 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 adderpqlem 10951 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
12113exp 1116 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))))
1413imp 406 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
158, 14mpbid 231 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))
16 nqerrel 10929 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 481 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10922 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 adderpqlem 10951 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
21203exp 1116 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))))
2310, 22mpan9 506 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
2417, 23mpbid 231 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))
25 addcompq 10947 . . . . . 6 (𝐵 +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ 𝐵)
26 addcompq 10947 . . . . . 6 (([Q]‘𝐵) +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5174 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8721 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
29 addpqf 10941 . . . . . 6 +pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7533 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
3129fovcl 7533 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 595 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10932 . . . . 5 (((𝐴 +pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 583 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3528, 34mpbid 231 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
364, 35eqtr4d 2769 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
37 0nnq 10921 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10927 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6723 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2819 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6920 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 331 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2812 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 327 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2819 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6920 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 331 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2812 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 327 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 612 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 addnqf 10945 . . . . . 6 +Q :(Q × Q)⟶Q
5453fdmi 6723 . . . . 5 dom +Q = (Q × Q)
5554ndmov 7588 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 159 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5703 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2819 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 323 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6723 . . . . . . 7 dom +pQ = ((N × N) × (N × N))
6160ndmov 7588 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ∅)
6261eleq1d 2812 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 327 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 +pQ 𝐵) ∈ dom [Q])
64 ndmfv 6920 . . . 4 (¬ (𝐴 +pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6656, 65eqtr4d 2769 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
6736, 66pm2.61i 182 1 (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  c0 4317   class class class wbr 5141   × cxp 5667  dom cdm 5669  cfv 6537  (class class class)co 7405   Er wer 8702  Ncnpi 10841   +pQ cplpq 10845   ~Q ceq 10848  Qcnq 10849  [Q]cerq 10851   +Q cplq 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-omul 8472  df-er 8705  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-1nq 10913
This theorem is referenced by:  addassnq  10955  distrnq  10958  ltexnq  10972
  Copyright terms: Public domain W3C validator