MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpq Structured version   Visualization version   GIF version

Theorem adderpq 10791
Description: Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpq (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))

Proof of Theorem adderpq
StepHypRef Expression
1 nqercl 10766 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10766 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 addpqnq 10773 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
5 enqer 10756 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10767 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 481 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10760 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 adderpqlem 10789 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
12113exp 1118 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))))
1413imp 407 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵)))
158, 14mpbid 231 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ 𝐵))
16 nqerrel 10767 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 482 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10760 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 adderpqlem 10789 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
21203exp 1118 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))))
2310, 22mpan9 507 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴))))
2417, 23mpbid 231 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) +pQ ([Q]‘𝐴)))
25 addcompq 10785 . . . . . 6 (𝐵 +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ 𝐵)
26 addcompq 10785 . . . . . 6 (([Q]‘𝐵) +pQ ([Q]‘𝐴)) = (([Q]‘𝐴) +pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5119 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8563 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)))
29 addpqf 10779 . . . . . 6 +pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7443 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
3129fovcl 7443 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 596 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10770 . . . . 5 (((𝐴 +pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 584 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ~Q (([Q]‘𝐴) +pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵)))))
3528, 34mpbid 231 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) +pQ ([Q]‘𝐵))))
364, 35eqtr4d 2779 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
37 0nnq 10759 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10765 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6649 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2828 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6843 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 330 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2821 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 326 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2828 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6843 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 330 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2821 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 326 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 613 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 addnqf 10783 . . . . . 6 +Q :(Q × Q)⟶Q
5453fdmi 6649 . . . . 5 dom +Q = (Q × Q)
5554ndmov 7497 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 159 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5641 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2828 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 322 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6649 . . . . . . 7 dom +pQ = ((N × N) × (N × N))
6160ndmov 7497 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ∅)
6261eleq1d 2821 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 +pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 326 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 +pQ 𝐵) ∈ dom [Q])
64 ndmfv 6843 . . . 4 (¬ (𝐴 +pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 +pQ 𝐵)) = ∅)
6656, 65eqtr4d 2779 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)))
6736, 66pm2.61i 182 1 (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  c0 4266   class class class wbr 5086   × cxp 5605  dom cdm 5607  cfv 6465  (class class class)co 7316   Er wer 8544  Ncnpi 10679   +pQ cplpq 10683   ~Q ceq 10686  Qcnq 10687  [Q]cerq 10689   +Q cplq 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-omul 8350  df-er 8547  df-ni 10707  df-pli 10708  df-mi 10709  df-lti 10710  df-plpq 10743  df-enq 10746  df-nq 10747  df-erq 10748  df-plq 10749  df-1nq 10751
This theorem is referenced by:  addassnq  10793  distrnq  10796  ltexnq  10810
  Copyright terms: Public domain W3C validator