MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Structured version   Visualization version   GIF version

Theorem mulerpq 10368
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 10342 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10342 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 mulpqnq 10352 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
41, 2, 3syl2an 598 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
5 enqer 10332 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10343 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 484 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10336 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 mulerpqlem 10366 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
12113exp 1116 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))))
1413imp 410 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
158, 14mpbid 235 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))
16 nqerrel 10343 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 485 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10336 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 mulerpqlem 10366 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
21203exp 1116 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))))
2310, 22mpan9 510 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
2417, 23mpbid 235 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))
25 mulcompq 10363 . . . . . 6 (𝐵 ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ 𝐵)
26 mulcompq 10363 . . . . . 6 (([Q]‘𝐵) ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5063 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8288 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
29 mulpqf 10357 . . . . . 6 ·pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7258 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
3129fovcl 7258 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 598 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10346 . . . . 5 (((𝐴 ·pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 587 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3528, 34mpbid 235 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
364, 35eqtr4d 2836 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
37 0nnq 10335 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10341 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6498 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2881 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6675 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 334 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2874 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 330 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2881 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6675 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 334 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2874 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 330 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 615 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 mulnqf 10360 . . . . . 6 ·Q :(Q × Q)⟶Q
5453fdmi 6498 . . . . 5 dom ·Q = (Q × Q)
5554ndmov 7312 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 162 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5553 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2881 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 326 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6498 . . . . . . 7 dom ·pQ = ((N × N) × (N × N))
6160ndmov 7312 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ∅)
6261eleq1d 2874 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 330 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 ·pQ 𝐵) ∈ dom [Q])
64 ndmfv 6675 . . . 4 (¬ (𝐴 ·pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6656, 65eqtr4d 2836 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
6736, 66pm2.61i 185 1 (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  c0 4243   class class class wbr 5030   × cxp 5517  dom cdm 5519  cfv 6324  (class class class)co 7135   Er wer 8269  Ncnpi 10255   ·pQ cmpq 10260   ~Q ceq 10262  Qcnq 10263  [Q]cerq 10265   ·Q cmq 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ni 10283  df-mi 10285  df-lti 10286  df-mpq 10320  df-enq 10322  df-nq 10323  df-erq 10324  df-mq 10326  df-1nq 10327
This theorem is referenced by:  mulassnq  10370  distrnq  10372  recmulnq  10375
  Copyright terms: Public domain W3C validator