MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Structured version   Visualization version   GIF version

Theorem mulerpq 10364
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 10338 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10338 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 mulpqnq 10348 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
41, 2, 3syl2an 598 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
5 enqer 10328 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10339 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 484 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10332 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 mulerpqlem 10362 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
12113exp 1116 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))))
1413imp 410 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
158, 14mpbid 235 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))
16 nqerrel 10339 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 485 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10332 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 mulerpqlem 10362 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
21203exp 1116 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))))
2310, 22mpan9 510 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
2417, 23mpbid 235 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))
25 mulcompq 10359 . . . . . 6 (𝐵 ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ 𝐵)
26 mulcompq 10359 . . . . . 6 (([Q]‘𝐵) ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5080 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8288 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
29 mulpqf 10353 . . . . . 6 ·pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7261 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
3129fovcl 7261 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 598 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10342 . . . . 5 (((𝐴 ·pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 587 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3528, 34mpbid 235 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
364, 35eqtr4d 2862 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
37 0nnq 10331 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10337 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6505 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2907 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6681 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 334 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2900 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 330 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2907 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6681 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 334 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2900 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 330 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 615 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 mulnqf 10356 . . . . . 6 ·Q :(Q × Q)⟶Q
5453fdmi 6505 . . . . 5 dom ·Q = (Q × Q)
5554ndmov 7315 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 162 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5570 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2907 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 326 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6505 . . . . . . 7 dom ·pQ = ((N × N) × (N × N))
6160ndmov 7315 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ∅)
6261eleq1d 2900 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 330 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 ·pQ 𝐵) ∈ dom [Q])
64 ndmfv 6681 . . . 4 (¬ (𝐴 ·pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6656, 65eqtr4d 2862 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
6736, 66pm2.61i 185 1 (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  c0 4274   class class class wbr 5047   × cxp 5534  dom cdm 5536  cfv 6336  (class class class)co 7138   Er wer 8269  Ncnpi 10251   ·pQ cmpq 10256   ~Q ceq 10258  Qcnq 10259  [Q]cerq 10261   ·Q cmq 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ni 10279  df-mi 10281  df-lti 10282  df-mpq 10316  df-enq 10318  df-nq 10319  df-erq 10320  df-mq 10322  df-1nq 10323
This theorem is referenced by:  mulassnq  10366  distrnq  10368  recmulnq  10371
  Copyright terms: Public domain W3C validator