MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Structured version   Visualization version   GIF version

Theorem mulerpq 10741
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 10715 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 10715 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 mulpqnq 10725 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
41, 2, 3syl2an 595 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
5 enqer 10705 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 10716 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 480 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 10709 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 mulerpqlem 10739 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
12113exp 1117 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))))
1413imp 406 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
158, 14mpbid 231 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))
16 nqerrel 10716 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 481 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 10709 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 mulerpqlem 10739 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
21203exp 1117 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))))
2310, 22mpan9 506 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
2417, 23mpbid 231 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))
25 mulcompq 10736 . . . . . 6 (𝐵 ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ 𝐵)
26 mulcompq 10736 . . . . . 6 (([Q]‘𝐵) ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 5110 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
286, 15, 27ertrd 8534 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
29 mulpqf 10730 . . . . . 6 ·pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 7422 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
3129fovcl 7422 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 595 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 10719 . . . . 5 (((𝐴 ·pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 583 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3528, 34mpbid 231 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
364, 35eqtr4d 2776 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
37 0nnq 10708 . . . . . . 7 ¬ ∅ ∈ Q
38 nqerf 10714 . . . . . . . . . . 11 [Q]:(N × N)⟶Q
3938fdmi 6630 . . . . . . . . . 10 dom [Q] = (N × N)
4039eleq2i 2825 . . . . . . . . 9 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6824 . . . . . . . . 9 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 330 . . . . . . . 8 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2818 . . . . . . 7 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 326 . . . . . 6 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 114 . . . . 5 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2825 . . . . . . . . 9 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6824 . . . . . . . . 9 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 330 . . . . . . . 8 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2818 . . . . . . 7 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 326 . . . . . 6 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 114 . . . . 5 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 612 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
53 mulnqf 10733 . . . . . 6 ·Q :(Q × Q)⟶Q
5453fdmi 6630 . . . . 5 dom ·Q = (Q × Q)
5554ndmov 7476 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
5652, 55nsyl5 159 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
57 0nelxp 5625 . . . . . 6 ¬ ∅ ∈ (N × N)
5839eleq2i 2825 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
5957, 58mtbir 322 . . . . 5 ¬ ∅ ∈ dom [Q]
6029fdmi 6630 . . . . . . 7 dom ·pQ = ((N × N) × (N × N))
6160ndmov 7476 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ∅)
6261eleq1d 2818 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6359, 62mtbiri 326 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 ·pQ 𝐵) ∈ dom [Q])
64 ndmfv 6824 . . . 4 (¬ (𝐴 ·pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6656, 65eqtr4d 2776 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
6736, 66pm2.61i 182 1 (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  c0 4259   class class class wbr 5077   × cxp 5589  dom cdm 5591  cfv 6447  (class class class)co 7295   Er wer 8515  Ncnpi 10628   ·pQ cmpq 10633   ~Q ceq 10635  Qcnq 10636  [Q]cerq 10638   ·Q cmq 10640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-oadd 8321  df-omul 8322  df-er 8518  df-ni 10656  df-mi 10658  df-lti 10659  df-mpq 10693  df-enq 10695  df-nq 10696  df-erq 10697  df-mq 10699  df-1nq 10700
This theorem is referenced by:  mulassnq  10743  distrnq  10745  recmulnq  10748
  Copyright terms: Public domain W3C validator