MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Visualization version   GIF version

Theorem dvfsumlem3 25097
Description: Lemma for dvfsumrlim 25100. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem3 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem3
Dummy variables 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13069 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3951 . . 3 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . 3 (𝜑𝑌𝑆)
53, 4sselid 3915 . 2 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . 4 (𝜑𝑋𝑆)
73, 6sselid 3915 . . 3 (𝜑𝑋 ∈ ℝ)
8 reflcl 13444 . . 3 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
9 peano2re 11078 . . 3 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
107, 8, 93syl 18 . 2 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
11 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ)
14 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
1514adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ)
16 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
1716adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1))
18 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ)
20 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2120adantlr 711 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
22 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
2322adantlr 711 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐵𝑉)
24 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
2524adantlr 711 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
26 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2726adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
28 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
29 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
3029adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈ ℝ*)
31 dvfsum.l . . . 4 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
32313adant1r 1175 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
33 dvfsum.h . . 3 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
346adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑆)
354adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑆)
36 dvfsumlem1.3 . . . 4 (𝜑𝐷𝑋)
3736adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷𝑋)
38 dvfsumlem1.4 . . . 4 (𝜑𝑋𝑌)
3938adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑌)
40 dvfsumlem1.5 . . . 4 (𝜑𝑌𝑈)
4140adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑈)
42 simpr 484 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1))
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 25096 . 2 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
443a1i 11 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℝ)
4544sselda 3917 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
46 reflcl 13444 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (⌊‘𝑥) ∈ ℝ)
4845, 47resubcld 11333 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ)
4944, 20, 22, 26dvmptrecl 25093 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
5048, 49remulcld 10936 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ)
51 fzfid 13621 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin)
5224ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ∀𝑥𝑍 𝐵 ∈ ℝ)
54 elfzuz 13181 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ𝑀))
5554, 11eleqtrrdi 2850 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘𝑍)
5628eleq1d 2823 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
5756rspccva 3551 . . . . . . . . . . 11 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
5853, 55, 57syl2an 595 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
5951, 58fsumrecl 15374 . . . . . . . . 9 ((𝜑𝑥𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ)
6059, 20resubcld 11333 . . . . . . . 8 ((𝜑𝑥𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ ℝ)
6150, 60readdcld 10935 . . . . . . 7 ((𝜑𝑥𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) ∈ ℝ)
6261, 33fmptd 6970 . . . . . 6 (𝜑𝐻:𝑆⟶ℝ)
6362adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ)
644adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑆)
6563, 64ffvelrnd 6944 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ∈ ℝ)
665adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ)
67 reflcl 13444 . . . . . . . 8 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
6866, 67syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ)
6918adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ)
707adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ)
7170, 8, 93syl 18 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ)
726, 1eleqtrdi 2849 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
7318rexrd 10956 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ*)
74 elioopnf 13104 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7573, 74syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7672, 75mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
7776simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
78 fllep1 13449 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
797, 78syl 17 . . . . . . . . . 10 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
8018, 7, 10, 77, 79ltletrd 11065 . . . . . . . . 9 (𝜑𝑇 < ((⌊‘𝑋) + 1))
8180adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1))
82 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌)
8370flcld 13446 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ)
8483peano2zd 12358 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ)
85 flge 13453 . . . . . . . . . 10 ((𝑌 ∈ ℝ ∧ ((⌊‘𝑋) + 1) ∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8666, 84, 85syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8782, 86mpbid 231 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))
8869, 71, 68, 81, 87ltletrd 11065 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌))
8973adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ*)
90 elioopnf 13104 . . . . . . . 8 (𝑇 ∈ ℝ* → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9189, 90syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9268, 88, 91mpbir2and 709 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞))
9392, 1eleqtrrdi 2850 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆)
9463, 93ffvelrnd 6944 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ)
956adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋𝑆)
9663, 95ffvelrnd 6944 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑋) ∈ ℝ)
9712adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ)
9814adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ)
9916adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1))
10020adantlr 711 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10122adantlr 711 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐵𝑉)
10224adantlr 711 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
10326adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
10429adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈ ℝ*)
105313adant1r 1175 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
10636adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷𝑋)
10770, 78syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1))
10898, 70, 71, 106, 107letrd 11062 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1))
10998, 71, 68, 108, 87letrd 11062 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌))
110 flle 13447 . . . . . . 7 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
11166, 110syl 17 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌)
11240adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑈)
113 fllep1 13449 . . . . . . . 8 (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1))
11466, 113syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1))
115 flidm 13457 . . . . . . . . 9 (𝑌 ∈ ℝ → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
11666, 115syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
117116oveq1d 7270 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1))
118114, 117breqtrrd 5098 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1))
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 25096 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
120119simpld 494 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)))
121 elioopnf 13104 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12273, 121syl 17 . . . . . . . . 9 (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12310, 80, 122mpbir2and 709 . . . . . . . 8 (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞))
124123, 1eleqtrrdi 2850 . . . . . . 7 (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆)
125124adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆)
12663, 125ffvelrnd 6944 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ)
12766flcld 13446 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ)
128 eluz2 12517 . . . . . . 7 ((⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧ (⌊‘𝑌) ∈ ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
12984, 127, 87, 128syl3anbrc 1341 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)))
13063adantr 480 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ)
131 elfzelz 13185 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ)
132131adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ)
133132zred 12355 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ)
13469adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ)
13571adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ)
13680ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1))
137 elfzle1 13188 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
138137adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
139134, 135, 133, 136, 138ltletrd 11065 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚)
14073ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ*)
141 elioopnf 13104 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
142140, 141syl 17 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
143133, 139, 142mpbir2and 709 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞))
144143, 1eleqtrrdi 2850 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚𝑆)
145130, 144ffvelrnd 6944 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻𝑚) ∈ ℝ)
14697adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ)
14798adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ)
14816ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1))
14969adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ)
150100adantlr 711 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
151101adantlr 711 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐵𝑉)
152102adantlr 711 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
153103adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
154104adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈ ℝ*)
1551053adant1r 1175 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
156 elfzelz 13185 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈ ℤ)
157156adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ)
158157zred 12355 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ)
15971adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈ ℝ)
16080ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1))
161 elfzle1 13188 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
162161adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
163149, 159, 158, 160, 162ltletrd 11065 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚)
164149rexrd 10956 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ*)
165164, 141syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
166158, 163, 165mpbir2and 709 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞))
167166, 1eleqtrrdi 2850 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚𝑆)
168 peano2re 11078 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
169158, 168syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ)
170158lep1d 11836 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1))
171149, 158, 169, 163, 170ltletrd 11065 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1))
172 elioopnf 13104 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
173164, 172syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
174169, 171, 173mpbir2and 709 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞))
175174, 1eleqtrrdi 2850 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆)
176108adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1))
177147, 159, 158, 176, 162letrd 11062 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷𝑚)
178169rexrd 10956 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ*)
17968rexrd 10956 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ*)
180179adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ*)
181 elfzle2 13189 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1))
182181adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1))
183 1red 10907 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈ ℝ)
18466adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ)
185184, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ)
186 leaddsub 11381 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
187158, 183, 185, 186syl3anc 1369 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
188182, 187mpbird 256 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌))
18966rexrd 10956 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ*)
190179, 189, 104, 111, 112xrletrd 12825 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈)
191190adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈)
192178, 180, 154, 188, 191xrletrd 12825 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈)
193 flid 13456 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
194157, 193syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚)
195194eqcomd 2744 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚))
196195oveq1d 7270 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1))
197169, 196eqled 11008 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1))
1981, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197dvfsumlem2 25096 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚) ∧ ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)))
199198simpld 494 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚))
200129, 145, 199monoord2 13682 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1)))
20171rexrd 10956 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ*)
202201, 179, 104, 87, 190xrletrd 12825 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈)
20371leidd 11471 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1))
2041, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203dvfsumlem2 25096 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)))
205204simpld 494 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋))
20694, 126, 96, 200, 205letrd 11062 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻𝑋))
20765, 94, 96, 120, 206letrd 11062 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻𝑋))
208 csbeq1 3831 . . . . . . 7 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
209208eleq1d 2823 . . . . . 6 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
21049ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
211210adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥𝑆 𝐵 ∈ ℝ)
212 nfcsb1v 3853 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵
213212nfel1 2922 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
214 csbeq1a 3842 . . . . . . . . . 10 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
215214eleq1d 2823 . . . . . . . . 9 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
216213, 215rspc 3539 . . . . . . . 8 (𝑚𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑚 / 𝑥𝐵 ∈ ℝ))
217211, 216mpan9 506 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚𝑆) → 𝑚 / 𝑥𝐵 ∈ ℝ)
218217ralrimiva 3107 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
219209, 218, 95rspcdva 3554 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 / 𝑥𝐵 ∈ ℝ)
22096, 219resubcld 11333 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ∈ ℝ)
221 csbeq1 3831 . . . . . . 7 (𝑚 = (⌊‘𝑌) → 𝑚 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
222221eleq1d 2823 . . . . . 6 (𝑚 = (⌊‘𝑌) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ))
223222, 218, 93rspcdva 3554 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ)
22494, 223resubcld 11333 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ∈ ℝ)
225 csbeq1 3831 . . . . . . 7 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
226225eleq1d 2823 . . . . . 6 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
227226, 218, 64rspcdva 3554 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 / 𝑥𝐵 ∈ ℝ)
22865, 227resubcld 11333 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) ∈ ℝ)
229 csbeq1 3831 . . . . . . . 8 (𝑚 = ((⌊‘𝑋) + 1) → 𝑚 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
230229eleq1d 2823 . . . . . . 7 (𝑚 = ((⌊‘𝑋) + 1) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ))
231230, 218, 125rspcdva 3554 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ)
232126, 231resubcld 11333 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ∈ ℝ)
233204simprd 495 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
234 fveq2 6756 . . . . . . . . . . 11 (𝑦 = 𝑚 → (𝐻𝑦) = (𝐻𝑚))
235 csbeq1 3831 . . . . . . . . . . 11 (𝑦 = 𝑚𝑦 / 𝑥𝐵 = 𝑚 / 𝑥𝐵)
236234, 235oveq12d 7273 . . . . . . . . . 10 (𝑦 = 𝑚 → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
237 eqid 2738 . . . . . . . . . 10 (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵)) = (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))
238 ovex 7288 . . . . . . . . . 10 ((𝐻𝑦) − 𝑦 / 𝑥𝐵) ∈ V
239236, 237, 238fvmpt3i 6862 . . . . . . . . 9 (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
240239elv 3428 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵)
241144, 217syldan 590 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 / 𝑥𝐵 ∈ ℝ)
242145, 241resubcld 11333 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ∈ ℝ)
243240, 242eqeltrid 2843 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ∈ ℝ)
244198simprd 495 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
245 ovex 7288 . . . . . . . . 9 (𝑚 + 1) ∈ V
246 fveq2 6756 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → (𝐻𝑦) = (𝐻‘(𝑚 + 1)))
247 csbeq1 3831 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → 𝑦 / 𝑥𝐵 = (𝑚 + 1) / 𝑥𝐵)
248246, 247oveq12d 7273 . . . . . . . . . 10 (𝑦 = (𝑚 + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
249248, 237, 238fvmpt3i 6862 . . . . . . . . 9 ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
250245, 249ax-mp 5 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)
251244, 240, 2503brtr4g 5104 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)))
252129, 243, 251monoord 13681 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)))
253 ovex 7288 . . . . . . 7 ((⌊‘𝑋) + 1) ∈ V
254 fveq2 6756 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → (𝐻𝑦) = (𝐻‘((⌊‘𝑋) + 1)))
255 csbeq1 3831 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → 𝑦 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
256254, 255oveq12d 7273 . . . . . . . 8 (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
257256, 237, 238fvmpt3i 6862 . . . . . . 7 (((⌊‘𝑋) + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
258253, 257ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)
259 fvex 6769 . . . . . . 7 (⌊‘𝑌) ∈ V
260 fveq2 6756 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → (𝐻𝑦) = (𝐻‘(⌊‘𝑌)))
261 csbeq1 3831 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → 𝑦 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
262260, 261oveq12d 7273 . . . . . . . 8 (𝑦 = (⌊‘𝑌) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
263262, 237, 238fvmpt3i 6862 . . . . . . 7 ((⌊‘𝑌) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
264259, 263ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵)
265252, 258, 2643brtr3g 5103 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
266220, 232, 224, 233, 265letrd 11062 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
267119simprd 495 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
268220, 224, 228, 266, 267letrd 11062 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
269207, 268jca 511 . 2 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
2705, 10, 43, 269lecasei 11011 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  csb 3828  wss 3883   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  (,)cioo 13008  ...cfz 13168  cfl 13438  Σcsu 15325   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvfsumlem4  25098  dvfsum2  25103
  Copyright terms: Public domain W3C validator