MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Visualization version   GIF version

Theorem dvfsumlem3 25911
Description: Lemma for dvfsumrlim 25914. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem3 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem3
Dummy variables 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13344 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3990 . . 3 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . 3 (𝜑𝑌𝑆)
53, 4sselid 3941 . 2 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . 4 (𝜑𝑋𝑆)
73, 6sselid 3941 . . 3 (𝜑𝑋 ∈ ℝ)
8 reflcl 13734 . . 3 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
9 peano2re 11323 . . 3 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
107, 8, 93syl 18 . 2 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
11 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ)
14 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
1514adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ)
16 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
1716adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1))
18 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ)
20 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2120adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
22 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
2322adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐵𝑉)
24 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
2524adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
26 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2726adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
28 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
29 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
3029adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈ ℝ*)
31 dvfsum.l . . . 4 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
32313adant1r 1178 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
33 dvfsum.h . . 3 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
346adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑆)
354adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑆)
36 dvfsumlem1.3 . . . 4 (𝜑𝐷𝑋)
3736adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷𝑋)
38 dvfsumlem1.4 . . . 4 (𝜑𝑋𝑌)
3938adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑌)
40 dvfsumlem1.5 . . . 4 (𝜑𝑌𝑈)
4140adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑈)
42 simpr 484 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1))
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 25909 . 2 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
443a1i 11 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℝ)
4544sselda 3943 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
46 reflcl 13734 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (⌊‘𝑥) ∈ ℝ)
4845, 47resubcld 11582 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ)
4944, 20, 22, 26dvmptrecl 25906 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
5048, 49remulcld 11180 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ)
51 fzfid 13914 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin)
5224ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ∀𝑥𝑍 𝐵 ∈ ℝ)
54 elfzuz 13457 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ𝑀))
5554, 11eleqtrrdi 2839 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘𝑍)
5628eleq1d 2813 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
5756rspccva 3584 . . . . . . . . . . 11 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
5853, 55, 57syl2an 596 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
5951, 58fsumrecl 15676 . . . . . . . . 9 ((𝜑𝑥𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ)
6059, 20resubcld 11582 . . . . . . . 8 ((𝜑𝑥𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ ℝ)
6150, 60readdcld 11179 . . . . . . 7 ((𝜑𝑥𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) ∈ ℝ)
6261, 33fmptd 7068 . . . . . 6 (𝜑𝐻:𝑆⟶ℝ)
6362adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ)
644adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑆)
6563, 64ffvelcdmd 7039 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ∈ ℝ)
665adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ)
67 reflcl 13734 . . . . . . . 8 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
6866, 67syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ)
6918adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ)
707adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ)
7170, 8, 93syl 18 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ)
726, 1eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
7318rexrd 11200 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ*)
74 elioopnf 13380 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7573, 74syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7672, 75mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
7776simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
78 fllep1 13739 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
797, 78syl 17 . . . . . . . . . 10 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
8018, 7, 10, 77, 79ltletrd 11310 . . . . . . . . 9 (𝜑𝑇 < ((⌊‘𝑋) + 1))
8180adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1))
82 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌)
8370flcld 13736 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ)
8483peano2zd 12617 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ)
85 flge 13743 . . . . . . . . . 10 ((𝑌 ∈ ℝ ∧ ((⌊‘𝑋) + 1) ∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8666, 84, 85syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8782, 86mpbid 232 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))
8869, 71, 68, 81, 87ltletrd 11310 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌))
8973adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ*)
90 elioopnf 13380 . . . . . . . 8 (𝑇 ∈ ℝ* → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9189, 90syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9268, 88, 91mpbir2and 713 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞))
9392, 1eleqtrrdi 2839 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆)
9463, 93ffvelcdmd 7039 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ)
956adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋𝑆)
9663, 95ffvelcdmd 7039 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑋) ∈ ℝ)
9712adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ)
9814adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ)
9916adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1))
10020adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10122adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐵𝑉)
10224adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
10326adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
10429adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈ ℝ*)
105313adant1r 1178 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
10636adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷𝑋)
10770, 78syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1))
10898, 70, 71, 106, 107letrd 11307 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1))
10998, 71, 68, 108, 87letrd 11307 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌))
110 flle 13737 . . . . . . 7 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
11166, 110syl 17 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌)
11240adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑈)
113 fllep1 13739 . . . . . . . 8 (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1))
11466, 113syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1))
115 flidm 13747 . . . . . . . . 9 (𝑌 ∈ ℝ → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
11666, 115syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
117116oveq1d 7384 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1))
118114, 117breqtrrd 5130 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1))
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 25909 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
120119simpld 494 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)))
121 elioopnf 13380 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12273, 121syl 17 . . . . . . . . 9 (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12310, 80, 122mpbir2and 713 . . . . . . . 8 (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞))
124123, 1eleqtrrdi 2839 . . . . . . 7 (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆)
125124adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆)
12663, 125ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ)
12766flcld 13736 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ)
128 eluz2 12775 . . . . . . 7 ((⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧ (⌊‘𝑌) ∈ ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
12984, 127, 87, 128syl3anbrc 1344 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)))
13063adantr 480 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ)
131 elfzelz 13461 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ)
132131adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ)
133132zred 12614 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ)
13469adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ)
13571adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ)
13680ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1))
137 elfzle1 13464 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
138137adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
139134, 135, 133, 136, 138ltletrd 11310 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚)
14073ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ*)
141 elioopnf 13380 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
142140, 141syl 17 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
143133, 139, 142mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞))
144143, 1eleqtrrdi 2839 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚𝑆)
145130, 144ffvelcdmd 7039 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻𝑚) ∈ ℝ)
14697adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ)
14798adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ)
14816ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1))
14969adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ)
150100adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
151101adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐵𝑉)
152102adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
153103adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
154104adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈ ℝ*)
1551053adant1r 1178 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
156 elfzelz 13461 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈ ℤ)
157156adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ)
158157zred 12614 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ)
15971adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈ ℝ)
16080ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1))
161 elfzle1 13464 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
162161adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
163149, 159, 158, 160, 162ltletrd 11310 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚)
164149rexrd 11200 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ*)
165164, 141syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
166158, 163, 165mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞))
167166, 1eleqtrrdi 2839 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚𝑆)
168 peano2re 11323 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
169158, 168syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ)
170158lep1d 12090 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1))
171149, 158, 169, 163, 170ltletrd 11310 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1))
172 elioopnf 13380 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
173164, 172syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
174169, 171, 173mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞))
175174, 1eleqtrrdi 2839 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆)
176108adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1))
177147, 159, 158, 176, 162letrd 11307 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷𝑚)
178169rexrd 11200 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ*)
17968rexrd 11200 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ*)
180179adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ*)
181 elfzle2 13465 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1))
182181adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1))
183 1red 11151 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈ ℝ)
18466adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ)
185184, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ)
186 leaddsub 11630 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
187158, 183, 185, 186syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
188182, 187mpbird 257 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌))
18966rexrd 11200 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ*)
190179, 189, 104, 111, 112xrletrd 13098 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈)
191190adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈)
192178, 180, 154, 188, 191xrletrd 13098 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈)
193 flid 13746 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
194157, 193syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚)
195194eqcomd 2735 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚))
196195oveq1d 7384 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1))
197169, 196eqled 11253 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1))
1981, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197dvfsumlem2 25909 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚) ∧ ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)))
199198simpld 494 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚))
200129, 145, 199monoord2 13974 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1)))
20171rexrd 11200 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ*)
202201, 179, 104, 87, 190xrletrd 13098 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈)
20371leidd 11720 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1))
2041, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203dvfsumlem2 25909 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)))
205204simpld 494 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋))
20694, 126, 96, 200, 205letrd 11307 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻𝑋))
20765, 94, 96, 120, 206letrd 11307 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻𝑋))
208 csbeq1 3862 . . . . . . 7 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
209208eleq1d 2813 . . . . . 6 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
21049ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
211210adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥𝑆 𝐵 ∈ ℝ)
212 nfcsb1v 3883 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵
213212nfel1 2908 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
214 csbeq1a 3873 . . . . . . . . . 10 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
215214eleq1d 2813 . . . . . . . . 9 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
216213, 215rspc 3573 . . . . . . . 8 (𝑚𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑚 / 𝑥𝐵 ∈ ℝ))
217211, 216mpan9 506 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚𝑆) → 𝑚 / 𝑥𝐵 ∈ ℝ)
218217ralrimiva 3125 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
219209, 218, 95rspcdva 3586 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 / 𝑥𝐵 ∈ ℝ)
22096, 219resubcld 11582 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ∈ ℝ)
221 csbeq1 3862 . . . . . . 7 (𝑚 = (⌊‘𝑌) → 𝑚 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
222221eleq1d 2813 . . . . . 6 (𝑚 = (⌊‘𝑌) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ))
223222, 218, 93rspcdva 3586 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ)
22494, 223resubcld 11582 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ∈ ℝ)
225 csbeq1 3862 . . . . . . 7 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
226225eleq1d 2813 . . . . . 6 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
227226, 218, 64rspcdva 3586 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 / 𝑥𝐵 ∈ ℝ)
22865, 227resubcld 11582 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) ∈ ℝ)
229 csbeq1 3862 . . . . . . . 8 (𝑚 = ((⌊‘𝑋) + 1) → 𝑚 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
230229eleq1d 2813 . . . . . . 7 (𝑚 = ((⌊‘𝑋) + 1) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ))
231230, 218, 125rspcdva 3586 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ)
232126, 231resubcld 11582 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ∈ ℝ)
233204simprd 495 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
234 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝑚 → (𝐻𝑦) = (𝐻𝑚))
235 csbeq1 3862 . . . . . . . . . . 11 (𝑦 = 𝑚𝑦 / 𝑥𝐵 = 𝑚 / 𝑥𝐵)
236234, 235oveq12d 7387 . . . . . . . . . 10 (𝑦 = 𝑚 → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
237 eqid 2729 . . . . . . . . . 10 (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵)) = (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))
238 ovex 7402 . . . . . . . . . 10 ((𝐻𝑦) − 𝑦 / 𝑥𝐵) ∈ V
239236, 237, 238fvmpt3i 6955 . . . . . . . . 9 (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
240239elv 3449 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵)
241144, 217syldan 591 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 / 𝑥𝐵 ∈ ℝ)
242145, 241resubcld 11582 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ∈ ℝ)
243240, 242eqeltrid 2832 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ∈ ℝ)
244198simprd 495 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
245 ovex 7402 . . . . . . . . 9 (𝑚 + 1) ∈ V
246 fveq2 6840 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → (𝐻𝑦) = (𝐻‘(𝑚 + 1)))
247 csbeq1 3862 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → 𝑦 / 𝑥𝐵 = (𝑚 + 1) / 𝑥𝐵)
248246, 247oveq12d 7387 . . . . . . . . . 10 (𝑦 = (𝑚 + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
249248, 237, 238fvmpt3i 6955 . . . . . . . . 9 ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
250245, 249ax-mp 5 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)
251244, 240, 2503brtr4g 5136 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)))
252129, 243, 251monoord 13973 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)))
253 ovex 7402 . . . . . . 7 ((⌊‘𝑋) + 1) ∈ V
254 fveq2 6840 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → (𝐻𝑦) = (𝐻‘((⌊‘𝑋) + 1)))
255 csbeq1 3862 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → 𝑦 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
256254, 255oveq12d 7387 . . . . . . . 8 (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
257256, 237, 238fvmpt3i 6955 . . . . . . 7 (((⌊‘𝑋) + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
258253, 257ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)
259 fvex 6853 . . . . . . 7 (⌊‘𝑌) ∈ V
260 fveq2 6840 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → (𝐻𝑦) = (𝐻‘(⌊‘𝑌)))
261 csbeq1 3862 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → 𝑦 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
262260, 261oveq12d 7387 . . . . . . . 8 (𝑦 = (⌊‘𝑌) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
263262, 237, 238fvmpt3i 6955 . . . . . . 7 ((⌊‘𝑌) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
264259, 263ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵)
265252, 258, 2643brtr3g 5135 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
266220, 232, 224, 233, 265letrd 11307 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
267119simprd 495 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
268220, 224, 228, 266, 267letrd 11307 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
269207, 268jca 511 . 2 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
2705, 10, 43, 269lecasei 11256 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  csb 3859  wss 3911   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  cz 12505  cuz 12769  (,)cioo 13282  ...cfz 13444  cfl 13728  Σcsu 15628   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  dvfsumlem4  25912  dvfsum2  25917
  Copyright terms: Public domain W3C validator