MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Visualization version   GIF version

Theorem dvfsumlem3 25957
Description: Lemma for dvfsumrlim 25960. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem3 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem3
Dummy variables 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13302 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3976 . . 3 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . 3 (𝜑𝑌𝑆)
53, 4sselid 3927 . 2 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . 4 (𝜑𝑋𝑆)
73, 6sselid 3927 . . 3 (𝜑𝑋 ∈ ℝ)
8 reflcl 13695 . . 3 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
9 peano2re 11281 . . 3 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
107, 8, 93syl 18 . 2 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
11 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ)
14 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
1514adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ)
16 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
1716adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1))
18 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ)
20 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2120adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
22 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
2322adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐵𝑉)
24 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
2524adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
26 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2726adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
28 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
29 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
3029adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈ ℝ*)
31 dvfsum.l . . . 4 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
32313adant1r 1178 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
33 dvfsum.h . . 3 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
346adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑆)
354adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑆)
36 dvfsumlem1.3 . . . 4 (𝜑𝐷𝑋)
3736adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷𝑋)
38 dvfsumlem1.4 . . . 4 (𝜑𝑋𝑌)
3938adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑌)
40 dvfsumlem1.5 . . . 4 (𝜑𝑌𝑈)
4140adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑈)
42 simpr 484 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1))
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 25955 . 2 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
443a1i 11 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℝ)
4544sselda 3929 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
46 reflcl 13695 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (⌊‘𝑥) ∈ ℝ)
4845, 47resubcld 11540 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ)
4944, 20, 22, 26dvmptrecl 25952 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
5048, 49remulcld 11137 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ)
51 fzfid 13875 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin)
5224ralrimiva 3124 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ∀𝑥𝑍 𝐵 ∈ ℝ)
54 elfzuz 13415 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ𝑀))
5554, 11eleqtrrdi 2842 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘𝑍)
5628eleq1d 2816 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
5756rspccva 3571 . . . . . . . . . . 11 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
5853, 55, 57syl2an 596 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
5951, 58fsumrecl 15636 . . . . . . . . 9 ((𝜑𝑥𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ)
6059, 20resubcld 11540 . . . . . . . 8 ((𝜑𝑥𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ ℝ)
6150, 60readdcld 11136 . . . . . . 7 ((𝜑𝑥𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) ∈ ℝ)
6261, 33fmptd 7042 . . . . . 6 (𝜑𝐻:𝑆⟶ℝ)
6362adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ)
644adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑆)
6563, 64ffvelcdmd 7013 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ∈ ℝ)
665adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ)
67 reflcl 13695 . . . . . . . 8 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
6866, 67syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ)
6918adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ)
707adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ)
7170, 8, 93syl 18 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ)
726, 1eleqtrdi 2841 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
7318rexrd 11157 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ*)
74 elioopnf 13338 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7573, 74syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7672, 75mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
7776simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
78 fllep1 13700 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
797, 78syl 17 . . . . . . . . . 10 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
8018, 7, 10, 77, 79ltletrd 11268 . . . . . . . . 9 (𝜑𝑇 < ((⌊‘𝑋) + 1))
8180adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1))
82 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌)
8370flcld 13697 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ)
8483peano2zd 12575 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ)
85 flge 13704 . . . . . . . . . 10 ((𝑌 ∈ ℝ ∧ ((⌊‘𝑋) + 1) ∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8666, 84, 85syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8782, 86mpbid 232 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))
8869, 71, 68, 81, 87ltletrd 11268 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌))
8973adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ*)
90 elioopnf 13338 . . . . . . . 8 (𝑇 ∈ ℝ* → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9189, 90syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9268, 88, 91mpbir2and 713 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞))
9392, 1eleqtrrdi 2842 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆)
9463, 93ffvelcdmd 7013 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ)
956adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋𝑆)
9663, 95ffvelcdmd 7013 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑋) ∈ ℝ)
9712adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ)
9814adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ)
9916adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1))
10020adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10122adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐵𝑉)
10224adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
10326adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
10429adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈ ℝ*)
105313adant1r 1178 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
10636adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷𝑋)
10770, 78syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1))
10898, 70, 71, 106, 107letrd 11265 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1))
10998, 71, 68, 108, 87letrd 11265 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌))
110 flle 13698 . . . . . . 7 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
11166, 110syl 17 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌)
11240adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑈)
113 fllep1 13700 . . . . . . . 8 (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1))
11466, 113syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1))
115 flidm 13708 . . . . . . . . 9 (𝑌 ∈ ℝ → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
11666, 115syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
117116oveq1d 7356 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1))
118114, 117breqtrrd 5114 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1))
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 25955 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
120119simpld 494 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)))
121 elioopnf 13338 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12273, 121syl 17 . . . . . . . . 9 (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12310, 80, 122mpbir2and 713 . . . . . . . 8 (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞))
124123, 1eleqtrrdi 2842 . . . . . . 7 (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆)
125124adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆)
12663, 125ffvelcdmd 7013 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ)
12766flcld 13697 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ)
128 eluz2 12733 . . . . . . 7 ((⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧ (⌊‘𝑌) ∈ ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
12984, 127, 87, 128syl3anbrc 1344 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)))
13063adantr 480 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ)
131 elfzelz 13419 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ)
132131adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ)
133132zred 12572 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ)
13469adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ)
13571adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ)
13680ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1))
137 elfzle1 13422 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
138137adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
139134, 135, 133, 136, 138ltletrd 11268 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚)
14073ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ*)
141 elioopnf 13338 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
142140, 141syl 17 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
143133, 139, 142mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞))
144143, 1eleqtrrdi 2842 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚𝑆)
145130, 144ffvelcdmd 7013 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻𝑚) ∈ ℝ)
14697adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ)
14798adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ)
14816ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1))
14969adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ)
150100adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
151101adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐵𝑉)
152102adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
153103adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
154104adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈ ℝ*)
1551053adant1r 1178 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
156 elfzelz 13419 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈ ℤ)
157156adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ)
158157zred 12572 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ)
15971adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈ ℝ)
16080ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1))
161 elfzle1 13422 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
162161adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
163149, 159, 158, 160, 162ltletrd 11268 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚)
164149rexrd 11157 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ*)
165164, 141syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
166158, 163, 165mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞))
167166, 1eleqtrrdi 2842 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚𝑆)
168 peano2re 11281 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
169158, 168syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ)
170158lep1d 12048 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1))
171149, 158, 169, 163, 170ltletrd 11268 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1))
172 elioopnf 13338 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
173164, 172syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
174169, 171, 173mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞))
175174, 1eleqtrrdi 2842 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆)
176108adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1))
177147, 159, 158, 176, 162letrd 11265 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷𝑚)
178169rexrd 11157 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ*)
17968rexrd 11157 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ*)
180179adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ*)
181 elfzle2 13423 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1))
182181adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1))
183 1red 11108 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈ ℝ)
18466adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ)
185184, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ)
186 leaddsub 11588 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
187158, 183, 185, 186syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
188182, 187mpbird 257 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌))
18966rexrd 11157 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ*)
190179, 189, 104, 111, 112xrletrd 13056 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈)
191190adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈)
192178, 180, 154, 188, 191xrletrd 13056 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈)
193 flid 13707 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
194157, 193syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚)
195194eqcomd 2737 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚))
196195oveq1d 7356 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1))
197169, 196eqled 11211 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1))
1981, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197dvfsumlem2 25955 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚) ∧ ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)))
199198simpld 494 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚))
200129, 145, 199monoord2 13935 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1)))
20171rexrd 11157 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ*)
202201, 179, 104, 87, 190xrletrd 13056 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈)
20371leidd 11678 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1))
2041, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203dvfsumlem2 25955 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)))
205204simpld 494 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋))
20694, 126, 96, 200, 205letrd 11265 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻𝑋))
20765, 94, 96, 120, 206letrd 11265 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻𝑋))
208 csbeq1 3848 . . . . . . 7 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
209208eleq1d 2816 . . . . . 6 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
21049ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
211210adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥𝑆 𝐵 ∈ ℝ)
212 nfcsb1v 3869 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵
213212nfel1 2911 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
214 csbeq1a 3859 . . . . . . . . . 10 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
215214eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
216213, 215rspc 3560 . . . . . . . 8 (𝑚𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑚 / 𝑥𝐵 ∈ ℝ))
217211, 216mpan9 506 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚𝑆) → 𝑚 / 𝑥𝐵 ∈ ℝ)
218217ralrimiva 3124 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
219209, 218, 95rspcdva 3573 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 / 𝑥𝐵 ∈ ℝ)
22096, 219resubcld 11540 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ∈ ℝ)
221 csbeq1 3848 . . . . . . 7 (𝑚 = (⌊‘𝑌) → 𝑚 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
222221eleq1d 2816 . . . . . 6 (𝑚 = (⌊‘𝑌) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ))
223222, 218, 93rspcdva 3573 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ)
22494, 223resubcld 11540 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ∈ ℝ)
225 csbeq1 3848 . . . . . . 7 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
226225eleq1d 2816 . . . . . 6 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
227226, 218, 64rspcdva 3573 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 / 𝑥𝐵 ∈ ℝ)
22865, 227resubcld 11540 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) ∈ ℝ)
229 csbeq1 3848 . . . . . . . 8 (𝑚 = ((⌊‘𝑋) + 1) → 𝑚 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
230229eleq1d 2816 . . . . . . 7 (𝑚 = ((⌊‘𝑋) + 1) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ))
231230, 218, 125rspcdva 3573 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ)
232126, 231resubcld 11540 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ∈ ℝ)
233204simprd 495 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
234 fveq2 6817 . . . . . . . . . . 11 (𝑦 = 𝑚 → (𝐻𝑦) = (𝐻𝑚))
235 csbeq1 3848 . . . . . . . . . . 11 (𝑦 = 𝑚𝑦 / 𝑥𝐵 = 𝑚 / 𝑥𝐵)
236234, 235oveq12d 7359 . . . . . . . . . 10 (𝑦 = 𝑚 → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
237 eqid 2731 . . . . . . . . . 10 (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵)) = (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))
238 ovex 7374 . . . . . . . . . 10 ((𝐻𝑦) − 𝑦 / 𝑥𝐵) ∈ V
239236, 237, 238fvmpt3i 6929 . . . . . . . . 9 (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
240239elv 3441 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵)
241144, 217syldan 591 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 / 𝑥𝐵 ∈ ℝ)
242145, 241resubcld 11540 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ∈ ℝ)
243240, 242eqeltrid 2835 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ∈ ℝ)
244198simprd 495 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
245 ovex 7374 . . . . . . . . 9 (𝑚 + 1) ∈ V
246 fveq2 6817 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → (𝐻𝑦) = (𝐻‘(𝑚 + 1)))
247 csbeq1 3848 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → 𝑦 / 𝑥𝐵 = (𝑚 + 1) / 𝑥𝐵)
248246, 247oveq12d 7359 . . . . . . . . . 10 (𝑦 = (𝑚 + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
249248, 237, 238fvmpt3i 6929 . . . . . . . . 9 ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
250245, 249ax-mp 5 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)
251244, 240, 2503brtr4g 5120 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)))
252129, 243, 251monoord 13934 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)))
253 ovex 7374 . . . . . . 7 ((⌊‘𝑋) + 1) ∈ V
254 fveq2 6817 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → (𝐻𝑦) = (𝐻‘((⌊‘𝑋) + 1)))
255 csbeq1 3848 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → 𝑦 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
256254, 255oveq12d 7359 . . . . . . . 8 (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
257256, 237, 238fvmpt3i 6929 . . . . . . 7 (((⌊‘𝑋) + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
258253, 257ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)
259 fvex 6830 . . . . . . 7 (⌊‘𝑌) ∈ V
260 fveq2 6817 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → (𝐻𝑦) = (𝐻‘(⌊‘𝑌)))
261 csbeq1 3848 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → 𝑦 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
262260, 261oveq12d 7359 . . . . . . . 8 (𝑦 = (⌊‘𝑌) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
263262, 237, 238fvmpt3i 6929 . . . . . . 7 ((⌊‘𝑌) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
264259, 263ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵)
265252, 258, 2643brtr3g 5119 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
266220, 232, 224, 233, 265letrd 11265 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
267119simprd 495 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
268220, 224, 228, 266, 267letrd 11265 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
269207, 268jca 511 . 2 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
2705, 10, 43, 269lecasei 11214 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  csb 3845  wss 3897   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  cr 11000  1c1 11002   + caddc 11004   · cmul 11006  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cmin 11339  cz 12463  cuz 12727  (,)cioo 13240  ...cfz 13402  cfl 13689  Σcsu 15588   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvfsumlem4  25958  dvfsum2  25963
  Copyright terms: Public domain W3C validator