MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Visualization version   GIF version

Theorem dvfsumlem3 26084
Description: Lemma for dvfsumrlim 26087. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem3 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem3
Dummy variables 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 13445 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4030 . . 3 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . 3 (𝜑𝑌𝑆)
53, 4sselid 3993 . 2 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . 4 (𝜑𝑋𝑆)
73, 6sselid 3993 . . 3 (𝜑𝑋 ∈ ℝ)
8 reflcl 13833 . . 3 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
9 peano2re 11432 . . 3 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
107, 8, 93syl 18 . 2 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
11 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ)
14 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
1514adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ)
16 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
1716adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1))
18 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
1918adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ)
20 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2120adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
22 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
2322adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐵𝑉)
24 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
2524adantlr 715 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
26 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2726adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
28 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
29 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
3029adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈ ℝ*)
31 dvfsum.l . . . 4 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
32313adant1r 1176 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
33 dvfsum.h . . 3 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
346adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑆)
354adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑆)
36 dvfsumlem1.3 . . . 4 (𝜑𝐷𝑋)
3736adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷𝑋)
38 dvfsumlem1.4 . . . 4 (𝜑𝑋𝑌)
3938adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑌)
40 dvfsumlem1.5 . . . 4 (𝜑𝑌𝑈)
4140adantr 480 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑈)
42 simpr 484 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1))
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 26082 . 2 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
443a1i 11 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℝ)
4544sselda 3995 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
46 reflcl 13833 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (⌊‘𝑥) ∈ ℝ)
4845, 47resubcld 11689 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ)
4944, 20, 22, 26dvmptrecl 26079 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
5048, 49remulcld 11289 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ)
51 fzfid 14011 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin)
5224ralrimiva 3144 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ∀𝑥𝑍 𝐵 ∈ ℝ)
54 elfzuz 13557 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ𝑀))
5554, 11eleqtrrdi 2850 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘𝑍)
5628eleq1d 2824 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
5756rspccva 3621 . . . . . . . . . . 11 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
5853, 55, 57syl2an 596 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
5951, 58fsumrecl 15767 . . . . . . . . 9 ((𝜑𝑥𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ)
6059, 20resubcld 11689 . . . . . . . 8 ((𝜑𝑥𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ ℝ)
6150, 60readdcld 11288 . . . . . . 7 ((𝜑𝑥𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) ∈ ℝ)
6261, 33fmptd 7134 . . . . . 6 (𝜑𝐻:𝑆⟶ℝ)
6362adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ)
644adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑆)
6563, 64ffvelcdmd 7105 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ∈ ℝ)
665adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ)
67 reflcl 13833 . . . . . . . 8 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
6866, 67syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ)
6918adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ)
707adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ)
7170, 8, 93syl 18 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ)
726, 1eleqtrdi 2849 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
7318rexrd 11309 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ*)
74 elioopnf 13480 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7573, 74syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7672, 75mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
7776simprd 495 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
78 fllep1 13838 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
797, 78syl 17 . . . . . . . . . 10 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
8018, 7, 10, 77, 79ltletrd 11419 . . . . . . . . 9 (𝜑𝑇 < ((⌊‘𝑋) + 1))
8180adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1))
82 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌)
8370flcld 13835 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ)
8483peano2zd 12723 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ)
85 flge 13842 . . . . . . . . . 10 ((𝑌 ∈ ℝ ∧ ((⌊‘𝑋) + 1) ∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8666, 84, 85syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8782, 86mpbid 232 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))
8869, 71, 68, 81, 87ltletrd 11419 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌))
8973adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ*)
90 elioopnf 13480 . . . . . . . 8 (𝑇 ∈ ℝ* → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9189, 90syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9268, 88, 91mpbir2and 713 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞))
9392, 1eleqtrrdi 2850 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆)
9463, 93ffvelcdmd 7105 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ)
956adantr 480 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋𝑆)
9663, 95ffvelcdmd 7105 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑋) ∈ ℝ)
9712adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ)
9814adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ)
9916adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1))
10020adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10122adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐵𝑉)
10224adantlr 715 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
10326adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
10429adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈ ℝ*)
105313adant1r 1176 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
10636adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷𝑋)
10770, 78syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1))
10898, 70, 71, 106, 107letrd 11416 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1))
10998, 71, 68, 108, 87letrd 11416 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌))
110 flle 13836 . . . . . . 7 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
11166, 110syl 17 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌)
11240adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑈)
113 fllep1 13838 . . . . . . . 8 (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1))
11466, 113syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1))
115 flidm 13846 . . . . . . . . 9 (𝑌 ∈ ℝ → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
11666, 115syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
117116oveq1d 7446 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1))
118114, 117breqtrrd 5176 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1))
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 26082 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
120119simpld 494 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)))
121 elioopnf 13480 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12273, 121syl 17 . . . . . . . . 9 (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12310, 80, 122mpbir2and 713 . . . . . . . 8 (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞))
124123, 1eleqtrrdi 2850 . . . . . . 7 (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆)
125124adantr 480 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆)
12663, 125ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ)
12766flcld 13835 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ)
128 eluz2 12882 . . . . . . 7 ((⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧ (⌊‘𝑌) ∈ ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
12984, 127, 87, 128syl3anbrc 1342 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)))
13063adantr 480 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ)
131 elfzelz 13561 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ)
132131adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ)
133132zred 12720 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ)
13469adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ)
13571adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ)
13680ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1))
137 elfzle1 13564 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
138137adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
139134, 135, 133, 136, 138ltletrd 11419 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚)
14073ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ*)
141 elioopnf 13480 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
142140, 141syl 17 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
143133, 139, 142mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞))
144143, 1eleqtrrdi 2850 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚𝑆)
145130, 144ffvelcdmd 7105 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻𝑚) ∈ ℝ)
14697adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ)
14798adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ)
14816ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1))
14969adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ)
150100adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
151101adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐵𝑉)
152102adantlr 715 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
153103adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
154104adantr 480 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈ ℝ*)
1551053adant1r 1176 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
156 elfzelz 13561 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈ ℤ)
157156adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ)
158157zred 12720 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ)
15971adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈ ℝ)
16080ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1))
161 elfzle1 13564 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
162161adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
163149, 159, 158, 160, 162ltletrd 11419 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚)
164149rexrd 11309 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ*)
165164, 141syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
166158, 163, 165mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞))
167166, 1eleqtrrdi 2850 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚𝑆)
168 peano2re 11432 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
169158, 168syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ)
170158lep1d 12197 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1))
171149, 158, 169, 163, 170ltletrd 11419 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1))
172 elioopnf 13480 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
173164, 172syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
174169, 171, 173mpbir2and 713 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞))
175174, 1eleqtrrdi 2850 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆)
176108adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1))
177147, 159, 158, 176, 162letrd 11416 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷𝑚)
178169rexrd 11309 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ*)
17968rexrd 11309 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ*)
180179adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ*)
181 elfzle2 13565 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1))
182181adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1))
183 1red 11260 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈ ℝ)
18466adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ)
185184, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ)
186 leaddsub 11737 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
187158, 183, 185, 186syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
188182, 187mpbird 257 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌))
18966rexrd 11309 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ*)
190179, 189, 104, 111, 112xrletrd 13201 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈)
191190adantr 480 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈)
192178, 180, 154, 188, 191xrletrd 13201 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈)
193 flid 13845 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
194157, 193syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚)
195194eqcomd 2741 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚))
196195oveq1d 7446 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1))
197169, 196eqled 11362 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1))
1981, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197dvfsumlem2 26082 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚) ∧ ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)))
199198simpld 494 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚))
200129, 145, 199monoord2 14071 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1)))
20171rexrd 11309 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ*)
202201, 179, 104, 87, 190xrletrd 13201 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈)
20371leidd 11827 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1))
2041, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203dvfsumlem2 26082 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)))
205204simpld 494 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋))
20694, 126, 96, 200, 205letrd 11416 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻𝑋))
20765, 94, 96, 120, 206letrd 11416 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻𝑋))
208 csbeq1 3911 . . . . . . 7 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
209208eleq1d 2824 . . . . . 6 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
21049ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
211210adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥𝑆 𝐵 ∈ ℝ)
212 nfcsb1v 3933 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵
213212nfel1 2920 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
214 csbeq1a 3922 . . . . . . . . . 10 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
215214eleq1d 2824 . . . . . . . . 9 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
216213, 215rspc 3610 . . . . . . . 8 (𝑚𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑚 / 𝑥𝐵 ∈ ℝ))
217211, 216mpan9 506 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚𝑆) → 𝑚 / 𝑥𝐵 ∈ ℝ)
218217ralrimiva 3144 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
219209, 218, 95rspcdva 3623 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 / 𝑥𝐵 ∈ ℝ)
22096, 219resubcld 11689 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ∈ ℝ)
221 csbeq1 3911 . . . . . . 7 (𝑚 = (⌊‘𝑌) → 𝑚 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
222221eleq1d 2824 . . . . . 6 (𝑚 = (⌊‘𝑌) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ))
223222, 218, 93rspcdva 3623 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ)
22494, 223resubcld 11689 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ∈ ℝ)
225 csbeq1 3911 . . . . . . 7 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
226225eleq1d 2824 . . . . . 6 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
227226, 218, 64rspcdva 3623 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 / 𝑥𝐵 ∈ ℝ)
22865, 227resubcld 11689 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) ∈ ℝ)
229 csbeq1 3911 . . . . . . . 8 (𝑚 = ((⌊‘𝑋) + 1) → 𝑚 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
230229eleq1d 2824 . . . . . . 7 (𝑚 = ((⌊‘𝑋) + 1) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ))
231230, 218, 125rspcdva 3623 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ)
232126, 231resubcld 11689 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ∈ ℝ)
233204simprd 495 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
234 fveq2 6907 . . . . . . . . . . 11 (𝑦 = 𝑚 → (𝐻𝑦) = (𝐻𝑚))
235 csbeq1 3911 . . . . . . . . . . 11 (𝑦 = 𝑚𝑦 / 𝑥𝐵 = 𝑚 / 𝑥𝐵)
236234, 235oveq12d 7449 . . . . . . . . . 10 (𝑦 = 𝑚 → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
237 eqid 2735 . . . . . . . . . 10 (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵)) = (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))
238 ovex 7464 . . . . . . . . . 10 ((𝐻𝑦) − 𝑦 / 𝑥𝐵) ∈ V
239236, 237, 238fvmpt3i 7021 . . . . . . . . 9 (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
240239elv 3483 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵)
241144, 217syldan 591 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 / 𝑥𝐵 ∈ ℝ)
242145, 241resubcld 11689 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ∈ ℝ)
243240, 242eqeltrid 2843 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ∈ ℝ)
244198simprd 495 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
245 ovex 7464 . . . . . . . . 9 (𝑚 + 1) ∈ V
246 fveq2 6907 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → (𝐻𝑦) = (𝐻‘(𝑚 + 1)))
247 csbeq1 3911 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → 𝑦 / 𝑥𝐵 = (𝑚 + 1) / 𝑥𝐵)
248246, 247oveq12d 7449 . . . . . . . . . 10 (𝑦 = (𝑚 + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
249248, 237, 238fvmpt3i 7021 . . . . . . . . 9 ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
250245, 249ax-mp 5 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)
251244, 240, 2503brtr4g 5182 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)))
252129, 243, 251monoord 14070 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)))
253 ovex 7464 . . . . . . 7 ((⌊‘𝑋) + 1) ∈ V
254 fveq2 6907 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → (𝐻𝑦) = (𝐻‘((⌊‘𝑋) + 1)))
255 csbeq1 3911 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → 𝑦 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
256254, 255oveq12d 7449 . . . . . . . 8 (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
257256, 237, 238fvmpt3i 7021 . . . . . . 7 (((⌊‘𝑋) + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
258253, 257ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)
259 fvex 6920 . . . . . . 7 (⌊‘𝑌) ∈ V
260 fveq2 6907 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → (𝐻𝑦) = (𝐻‘(⌊‘𝑌)))
261 csbeq1 3911 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → 𝑦 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
262260, 261oveq12d 7449 . . . . . . . 8 (𝑦 = (⌊‘𝑌) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
263262, 237, 238fvmpt3i 7021 . . . . . . 7 ((⌊‘𝑌) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
264259, 263ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵)
265252, 258, 2643brtr3g 5181 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
266220, 232, 224, 233, 265letrd 11416 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
267119simprd 495 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
268220, 224, 228, 266, 267letrd 11416 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
269207, 268jca 511 . 2 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
2705, 10, 43, 269lecasei 11365 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  csb 3908  wss 3963   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  (,)cioo 13384  ...cfz 13544  cfl 13827  Σcsu 15719   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  dvfsumlem4  26085  dvfsum2  26090
  Copyright terms: Public domain W3C validator