Step | Hyp | Ref
| Expression |
1 | | dvfsum.s |
. . . 4
⊢ 𝑆 = (𝑇(,)+∞) |
2 | | ioossre 13140 |
. . . 4
⊢ (𝑇(,)+∞) ⊆
ℝ |
3 | 1, 2 | eqsstri 3955 |
. . 3
⊢ 𝑆 ⊆
ℝ |
4 | | dvfsumlem1.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
5 | 3, 4 | sselid 3919 |
. 2
⊢ (𝜑 → 𝑌 ∈ ℝ) |
6 | | dvfsumlem1.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
7 | 3, 6 | sselid 3919 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
8 | | reflcl 13516 |
. . 3
⊢ (𝑋 ∈ ℝ →
(⌊‘𝑋) ∈
ℝ) |
9 | | peano2re 11148 |
. . 3
⊢
((⌊‘𝑋)
∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ) |
10 | 7, 8, 9 | 3syl 18 |
. 2
⊢ (𝜑 → ((⌊‘𝑋) + 1) ∈
ℝ) |
11 | | dvfsum.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
12 | | dvfsum.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ) |
14 | | dvfsum.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ ℝ) |
15 | 14 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ) |
16 | | dvfsum.md |
. . . 4
⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
17 | 16 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1)) |
18 | | dvfsum.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ ℝ) |
19 | 18 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ) |
20 | | dvfsum.a |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
21 | 20 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
22 | | dvfsum.b1 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
23 | 22 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
24 | | dvfsum.b2 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
25 | 24 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
26 | | dvfsum.b3 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
27 | 26 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
28 | | dvfsum.c |
. . 3
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
29 | | dvfsum.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈
ℝ*) |
30 | 29 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈
ℝ*) |
31 | | dvfsum.l |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) |
32 | 31 | 3adant1r 1176 |
. . 3
⊢ (((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) |
33 | | dvfsum.h |
. . 3
⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) |
34 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋 ∈ 𝑆) |
35 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ∈ 𝑆) |
36 | | dvfsumlem1.3 |
. . . 4
⊢ (𝜑 → 𝐷 ≤ 𝑋) |
37 | 36 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ≤ 𝑋) |
38 | | dvfsumlem1.4 |
. . . 4
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
39 | 38 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋 ≤ 𝑌) |
40 | | dvfsumlem1.5 |
. . . 4
⊢ (𝜑 → 𝑌 ≤ 𝑈) |
41 | 40 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ 𝑈) |
42 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1)) |
43 | 1, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42 | dvfsumlem2 25191 |
. 2
⊢ ((𝜑 ∧ 𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) |
44 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ℝ) |
45 | 44 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
46 | | reflcl 13516 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (⌊‘𝑥) ∈ ℝ) |
48 | 45, 47 | resubcld 11403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ) |
49 | 44, 20, 22, 26 | dvmptrecl 25188 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) |
50 | 48, 49 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ) |
51 | | fzfid 13693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin) |
52 | 24 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
54 | | elfzuz 13252 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
55 | 54, 11 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ 𝑍) |
56 | 28 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
57 | 56 | rspccva 3560 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℝ) |
58 | 53, 55, 57 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ) |
59 | 51, 58 | fsumrecl 15446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ) |
60 | 59, 20 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴) ∈ ℝ) |
61 | 50, 60 | readdcld 11004 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) ∈ ℝ) |
62 | 61, 33 | fmptd 6988 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝑆⟶ℝ) |
63 | 62 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ) |
64 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ 𝑆) |
65 | 63, 64 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘𝑌) ∈ ℝ) |
66 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ) |
67 | | reflcl 13516 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ →
(⌊‘𝑌) ∈
ℝ) |
68 | 66, 67 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ) |
69 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ) |
70 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ) |
71 | 70, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ) |
72 | 6, 1 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝑇(,)+∞)) |
73 | 18 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈
ℝ*) |
74 | | elioopnf 13175 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ ℝ*
→ (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))) |
76 | 72, 75 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)) |
77 | 76 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 < 𝑋) |
78 | | fllep1 13521 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1)) |
79 | 7, 78 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ≤ ((⌊‘𝑋) + 1)) |
80 | 18, 7, 10, 77, 79 | ltletrd 11135 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 < ((⌊‘𝑋) + 1)) |
81 | 80 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1)) |
82 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌) |
83 | 70 | flcld 13518 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ) |
84 | 83 | peano2zd 12429 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ) |
85 | | flge 13525 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ ℝ ∧
((⌊‘𝑋) + 1)
∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))) |
86 | 66, 84, 85 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))) |
87 | 82, 86 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)) |
88 | 69, 71, 68, 81, 87 | ltletrd 11135 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌)) |
89 | 73 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈
ℝ*) |
90 | | elioopnf 13175 |
. . . . . . . 8
⊢ (𝑇 ∈ ℝ*
→ ((⌊‘𝑌)
∈ (𝑇(,)+∞)
↔ ((⌊‘𝑌)
∈ ℝ ∧ 𝑇 <
(⌊‘𝑌)))) |
91 | 89, 90 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌)))) |
92 | 68, 88, 91 | mpbir2and 710 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞)) |
93 | 92, 1 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆) |
94 | 63, 93 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ) |
95 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ 𝑆) |
96 | 63, 95 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘𝑋) ∈ ℝ) |
97 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ) |
98 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ) |
99 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1)) |
100 | 20 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
101 | 22 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
102 | 24 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
103 | 26 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
104 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈
ℝ*) |
105 | 31 | 3adant1r 1176 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) |
106 | 36 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ 𝑋) |
107 | 70, 78 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1)) |
108 | 98, 70, 71, 106, 107 | letrd 11132 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1)) |
109 | 98, 71, 68, 108, 87 | letrd 11132 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌)) |
110 | | flle 13519 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ →
(⌊‘𝑌) ≤
𝑌) |
111 | 66, 110 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌) |
112 | 40 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ 𝑈) |
113 | | fllep1 13521 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1)) |
114 | 66, 113 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1)) |
115 | | flidm 13529 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ →
(⌊‘(⌊‘𝑌)) = (⌊‘𝑌)) |
116 | 66, 115 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌)) |
117 | 116 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) →
((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1)) |
118 | 114, 117 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1)) |
119 | 1, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118 | dvfsumlem2 25191 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) |
120 | 119 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘𝑌) ≤ (𝐻‘(⌊‘𝑌))) |
121 | | elioopnf 13175 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ℝ*
→ (((⌊‘𝑋)
+ 1) ∈ (𝑇(,)+∞)
↔ (((⌊‘𝑋)
+ 1) ∈ ℝ ∧ 𝑇
< ((⌊‘𝑋) +
1)))) |
122 | 73, 121 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧
𝑇 <
((⌊‘𝑋) +
1)))) |
123 | 10, 80, 122 | mpbir2and 710 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞)) |
124 | 123, 1 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆) |
125 | 124 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆) |
126 | 63, 125 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ) |
127 | 66 | flcld 13518 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ) |
128 | | eluz2 12588 |
. . . . . . 7
⊢
((⌊‘𝑌)
∈ (ℤ≥‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧
(⌊‘𝑌) ∈
ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))) |
129 | 84, 127, 87, 128 | syl3anbrc 1342 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈
(ℤ≥‘((⌊‘𝑋) + 1))) |
130 | 63 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ) |
131 | | elfzelz 13256 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ) |
132 | 131 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ) |
133 | 132 | zred 12426 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ) |
134 | 69 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ) |
135 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ) |
136 | 80 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1)) |
137 | | elfzle1 13259 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚) |
138 | 137 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚) |
139 | 134, 135,
133, 136, 138 | ltletrd 11135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚) |
140 | 73 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈
ℝ*) |
141 | | elioopnf 13175 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ℝ*
→ (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚))) |
142 | 140, 141 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚))) |
143 | 133, 139,
142 | mpbir2and 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞)) |
144 | 143, 1 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ 𝑆) |
145 | 130, 144 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻‘𝑚) ∈ ℝ) |
146 | 97 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ) |
147 | 98 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ) |
148 | 16 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1)) |
149 | 69 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ) |
150 | 100 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
151 | 101 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
152 | 102 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
153 | 103 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
154 | 104 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈
ℝ*) |
155 | 105 | 3adant1r 1176 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) |
156 | | elfzelz 13256 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈
ℤ) |
157 | 156 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ) |
158 | 157 | zred 12426 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ) |
159 | 71 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈
ℝ) |
160 | 80 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1)) |
161 | | elfzle1 13259 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) →
((⌊‘𝑋) + 1)
≤ 𝑚) |
162 | 161 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚) |
163 | 149, 159,
158, 160, 162 | ltletrd 11135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚) |
164 | 149 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈
ℝ*) |
165 | 164, 141 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚))) |
166 | 158, 163,
165 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞)) |
167 | 166, 1 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ 𝑆) |
168 | | peano2re 11148 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℝ → (𝑚 + 1) ∈
ℝ) |
169 | 158, 168 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ) |
170 | 158 | lep1d 11906 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1)) |
171 | 149, 158,
169, 163, 170 | ltletrd 11135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1)) |
172 | | elioopnf 13175 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ ℝ*
→ ((𝑚 + 1) ∈
(𝑇(,)+∞) ↔
((𝑚 + 1) ∈ ℝ
∧ 𝑇 < (𝑚 + 1)))) |
173 | 164, 172 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1)))) |
174 | 169, 171,
173 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞)) |
175 | 174, 1 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆) |
176 | 108 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1)) |
177 | 147, 159,
158, 176, 162 | letrd 11132 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ 𝑚) |
178 | 169 | rexrd 11025 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈
ℝ*) |
179 | 68 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈
ℝ*) |
180 | 179 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈
ℝ*) |
181 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1)) |
182 | 181 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1)) |
183 | | 1red 10976 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈
ℝ) |
184 | 66 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ) |
185 | 184, 67 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈
ℝ) |
186 | | leaddsub 11451 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧ 1 ∈
ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1))) |
187 | 158, 183,
185, 186 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1))) |
188 | 182, 187 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌)) |
189 | 66 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈
ℝ*) |
190 | 179, 189,
104, 111, 112 | xrletrd 12896 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈) |
191 | 190 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈) |
192 | 178, 180,
154, 188, 191 | xrletrd 12896 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈) |
193 | | flid 13528 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℤ →
(⌊‘𝑚) = 𝑚) |
194 | 157, 193 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚) |
195 | 194 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚)) |
196 | 195 | oveq1d 7290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1)) |
197 | 169, 196 | eqled 11078 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1)) |
198 | 1, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197 | dvfsumlem2 25191 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻‘𝑚) ∧ ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵) ≤ ((𝐻‘(𝑚 + 1)) − ⦋(𝑚 + 1) / 𝑥⦌𝐵))) |
199 | 198 | simpld 495 |
. . . . . 6
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻‘𝑚)) |
200 | 129, 145,
199 | monoord2 13754 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1))) |
201 | 71 | rexrd 11025 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈
ℝ*) |
202 | 201, 179,
104, 87, 190 | xrletrd 12896 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈) |
203 | 71 | leidd 11541 |
. . . . . . 7
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1)) |
204 | 1, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203 | dvfsumlem2 25191 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵))) |
205 | 204 | simpld 495 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻‘𝑋)) |
206 | 94, 126, 96, 200, 205 | letrd 11132 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘𝑋)) |
207 | 65, 94, 96, 120, 206 | letrd 11132 |
. . 3
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘𝑌) ≤ (𝐻‘𝑋)) |
208 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑚 = 𝑋 → ⦋𝑚 / 𝑥⦌𝐵 = ⦋𝑋 / 𝑥⦌𝐵) |
209 | 208 | eleq1d 2823 |
. . . . . 6
⊢ (𝑚 = 𝑋 → (⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ ↔ ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ)) |
210 | 49 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
211 | 210 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ) |
212 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑚 / 𝑥⦌𝐵 |
213 | 212 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ |
214 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑥⦌𝐵) |
215 | 214 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ ⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ)) |
216 | 213, 215 | rspc 3549 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ)) |
217 | 211, 216 | mpan9 507 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ 𝑆) → ⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ) |
218 | 217 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚 ∈ 𝑆 ⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ) |
219 | 209, 218,
95 | rspcdva 3562 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ⦋𝑋 / 𝑥⦌𝐵 ∈ ℝ) |
220 | 96, 219 | resubcld 11403 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ∈ ℝ) |
221 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑚 = (⌊‘𝑌) → ⦋𝑚 / 𝑥⦌𝐵 = ⦋(⌊‘𝑌) / 𝑥⦌𝐵) |
222 | 221 | eleq1d 2823 |
. . . . . 6
⊢ (𝑚 = (⌊‘𝑌) → (⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ ↔
⦋(⌊‘𝑌) / 𝑥⦌𝐵 ∈ ℝ)) |
223 | 222, 218,
93 | rspcdva 3562 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ⦋(⌊‘𝑌) / 𝑥⦌𝐵 ∈ ℝ) |
224 | 94, 223 | resubcld 11403 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵) ∈ ℝ) |
225 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑚 = 𝑌 → ⦋𝑚 / 𝑥⦌𝐵 = ⦋𝑌 / 𝑥⦌𝐵) |
226 | 225 | eleq1d 2823 |
. . . . . 6
⊢ (𝑚 = 𝑌 → (⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ ↔ ⦋𝑌 / 𝑥⦌𝐵 ∈ ℝ)) |
227 | 226, 218,
64 | rspcdva 3562 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ⦋𝑌 / 𝑥⦌𝐵 ∈ ℝ) |
228 | 65, 227 | resubcld 11403 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵) ∈ ℝ) |
229 | | csbeq1 3835 |
. . . . . . . 8
⊢ (𝑚 = ((⌊‘𝑋) + 1) →
⦋𝑚 / 𝑥⦌𝐵 = ⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵) |
230 | 229 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑚 = ((⌊‘𝑋) + 1) →
(⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ ↔
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵 ∈ ℝ)) |
231 | 230, 218,
125 | rspcdva 3562 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) →
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵 ∈ ℝ) |
232 | 126, 231 | resubcld 11403 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵) ∈ ℝ) |
233 | 204 | simprd 496 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵)) |
234 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑚 → (𝐻‘𝑦) = (𝐻‘𝑚)) |
235 | | csbeq1 3835 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑚 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑚 / 𝑥⦌𝐵) |
236 | 234, 235 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑚 → ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵) = ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵)) |
237 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵)) = (𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵)) |
238 | | ovex 7308 |
. . . . . . . . . 10
⊢ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵) ∈ V |
239 | 236, 237,
238 | fvmpt3i 6880 |
. . . . . . . . 9
⊢ (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘𝑚) = ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵)) |
240 | 239 | elv 3438 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘𝑚) = ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵) |
241 | 144, 217 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ⦋𝑚 / 𝑥⦌𝐵 ∈ ℝ) |
242 | 145, 241 | resubcld 11403 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵) ∈ ℝ) |
243 | 240, 242 | eqeltrid 2843 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘𝑚) ∈ ℝ) |
244 | 198 | simprd 496 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘𝑚) − ⦋𝑚 / 𝑥⦌𝐵) ≤ ((𝐻‘(𝑚 + 1)) − ⦋(𝑚 + 1) / 𝑥⦌𝐵)) |
245 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑚 + 1) ∈ V |
246 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑚 + 1) → (𝐻‘𝑦) = (𝐻‘(𝑚 + 1))) |
247 | | csbeq1 3835 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑚 + 1) → ⦋𝑦 / 𝑥⦌𝐵 = ⦋(𝑚 + 1) / 𝑥⦌𝐵) |
248 | 246, 247 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑚 + 1) → ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵) = ((𝐻‘(𝑚 + 1)) − ⦋(𝑚 + 1) / 𝑥⦌𝐵)) |
249 | 248, 237,
238 | fvmpt3i 6880 |
. . . . . . . . 9
⊢ ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − ⦋(𝑚 + 1) / 𝑥⦌𝐵)) |
250 | 245, 249 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − ⦋(𝑚 + 1) / 𝑥⦌𝐵) |
251 | 244, 240,
250 | 3brtr4g 5108 |
. . . . . . 7
⊢ (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(𝑚 + 1))) |
252 | 129, 243,
251 | monoord 13753 |
. . . . . 6
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(⌊‘𝑌))) |
253 | | ovex 7308 |
. . . . . . 7
⊢
((⌊‘𝑋) +
1) ∈ V |
254 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = ((⌊‘𝑋) + 1) → (𝐻‘𝑦) = (𝐻‘((⌊‘𝑋) + 1))) |
255 | | csbeq1 3835 |
. . . . . . . . 9
⊢ (𝑦 = ((⌊‘𝑋) + 1) →
⦋𝑦 / 𝑥⦌𝐵 = ⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵) |
256 | 254, 255 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵)) |
257 | 256, 237,
238 | fvmpt3i 6880 |
. . . . . . 7
⊢
(((⌊‘𝑋)
+ 1) ∈ V → ((𝑦
∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵)) |
258 | 253, 257 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵) |
259 | | fvex 6787 |
. . . . . . 7
⊢
(⌊‘𝑌)
∈ V |
260 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = (⌊‘𝑌) → (𝐻‘𝑦) = (𝐻‘(⌊‘𝑌))) |
261 | | csbeq1 3835 |
. . . . . . . . 9
⊢ (𝑦 = (⌊‘𝑌) → ⦋𝑦 / 𝑥⦌𝐵 = ⦋(⌊‘𝑌) / 𝑥⦌𝐵) |
262 | 260, 261 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑦 = (⌊‘𝑌) → ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵) = ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵)) |
263 | 262, 237,
238 | fvmpt3i 6880 |
. . . . . . 7
⊢
((⌊‘𝑌)
∈ V → ((𝑦 ∈
V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵)) |
264 | 259, 263 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ V ↦ ((𝐻‘𝑦) − ⦋𝑦 / 𝑥⦌𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵) |
265 | 252, 258,
264 | 3brtr3g 5107 |
. . . . 5
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) −
⦋((⌊‘𝑋) + 1) / 𝑥⦌𝐵) ≤ ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵)) |
266 | 220, 232,
224, 233, 265 | letrd 11132 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵)) |
267 | 119 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) −
⦋(⌊‘𝑌) / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵)) |
268 | 220, 224,
228, 266, 267 | letrd 11132 |
. . 3
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵)) |
269 | 207, 268 | jca 512 |
. 2
⊢ ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) |
270 | 5, 10, 43, 269 | lecasei 11081 |
1
⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) |