| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnt2 | Structured version Visualization version GIF version | ||
| Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| Ref | Expression |
|---|---|
| pnt2 | ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12340 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 2 | elicopnf 13485 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
| 4 | chprpcl 27251 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+) | |
| 5 | 3, 4 | sylbi 217 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+) |
| 6 | 3 | simplbi 497 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
| 7 | 0red 11264 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
| 8 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
| 9 | 2pos 12369 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
| 11 | 3 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
| 12 | 7, 8, 6, 10, 11 | ltletrd 11421 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
| 13 | 6, 12 | elrpd 13074 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
| 14 | 5, 13 | rpdivcld 13094 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
| 15 | 14 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
| 16 | chtrpcl 27218 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
| 17 | 3, 16 | sylbi 217 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
| 18 | 5, 17 | rpdivcld 13094 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
| 20 | 13 | ssriv 3987 | . . . . . . 7 ⊢ (2[,)+∞) ⊆ ℝ+ |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
| 22 | pnt3 27656 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
| 24 | 21, 23 | rlimres2 15597 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
| 25 | chpchtlim 27523 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
| 26 | 25 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1) |
| 27 | ax-1ne0 11224 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
| 29 | 19 | rpne0d 13082 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0) |
| 30 | 15, 19, 24, 26, 28, 29 | rlimdiv 15682 | . . . 4 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1)) |
| 31 | rpre 13043 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 32 | chpcl 27167 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
| 33 | 31, 32 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
| 34 | 33 | recnd 11289 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
| 35 | 13, 34 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
| 36 | 13 | rpcnne0d 13086 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 37 | 5 | rpcnne0d 13086 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) |
| 38 | 17 | rpcnne0d 13086 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
| 39 | divdivdiv 11968 | . . . . . . . 8 ⊢ ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) | |
| 40 | 35, 36, 37, 38, 39 | syl22anc 839 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) |
| 41 | 6 | recnd 11289 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ) |
| 42 | 41, 35 | mulcomd 11282 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥)) |
| 43 | 42 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥))) |
| 44 | chtcl 27152 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ) | |
| 45 | 31, 44 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ) |
| 46 | 45 | recnd 11289 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ) |
| 47 | 13, 46 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ) |
| 48 | divcan5 11969 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) | |
| 49 | 47, 36, 37, 48 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) |
| 50 | 40, 43, 49 | 3eqtrd 2781 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥)) |
| 51 | 50 | mpteq2ia 5245 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
| 52 | resmpt 6055 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
| 53 | 20, 52 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
| 54 | 51, 53 | eqtr4i 2768 | . . . 4 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) |
| 55 | 1div1e1 11958 | . . . 4 ⊢ (1 / 1) = 1 | |
| 56 | 30, 54, 55 | 3brtr3g 5176 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1) |
| 57 | rerpdivcl 13065 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) | |
| 58 | 45, 57 | mpancom 688 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
| 59 | 58 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
| 60 | 59 | recnd 11289 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ) |
| 61 | 60 | fmpttd 7135 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
| 62 | rpssre 13042 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 63 | 62 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
| 64 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
| 65 | 61, 63, 64 | rlimresb 15601 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)) |
| 66 | 56, 65 | mpbird 257 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1) |
| 67 | 66 | mptru 1547 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2940 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 +∞cpnf 11292 < clt 11295 ≤ cle 11296 / cdiv 11920 2c2 12321 ℝ+crp 13034 [,)cico 13389 ⇝𝑟 crli 15521 θccht 27134 ψcchp 27136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-o1 15526 df-lo1 15527 df-sum 15723 df-ef 16103 df-e 16104 df-sin 16105 df-cos 16106 df-tan 16107 df-pi 16108 df-dvds 16291 df-gcd 16532 df-prm 16709 df-pc 16875 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 df-ulm 26420 df-log 26598 df-cxp 26599 df-atan 26910 df-em 27036 df-cht 27140 df-vma 27141 df-chp 27142 df-ppi 27143 df-mu 27144 |
| This theorem is referenced by: pnt 27658 |
| Copyright terms: Public domain | W3C validator |