MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt2 Structured version   Visualization version   GIF version

Theorem pnt2 27571
Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt2 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt2
StepHypRef Expression
1 2re 12210 . . . . . . . . 9 2 ∈ ℝ
2 elicopnf 13352 . . . . . . . . 9 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
31, 2ax-mp 5 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4 chprpcl 27165 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+)
53, 4sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+)
63simplbi 497 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
7 0red 11126 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
81a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
9 2pos 12239 . . . . . . . . . 10 0 < 2
109a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 2)
113simprbi 496 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11284 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
136, 12elrpd 12937 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
145, 13rpdivcld 12957 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
1514adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
16 chtrpcl 27132 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
173, 16sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
185, 17rpdivcld 12957 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
1918adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
2013ssriv 3934 . . . . . . 7 (2[,)+∞) ⊆ ℝ+
2120a1i 11 . . . . . 6 (⊤ → (2[,)+∞) ⊆ ℝ+)
22 pnt3 27570 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
2322a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
2421, 23rlimres2 15475 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
25 chpchtlim 27437 . . . . . 6 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
2625a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
27 ax-1ne0 11086 . . . . . 6 1 ≠ 0
2827a1i 11 . . . . 5 (⊤ → 1 ≠ 0)
2919rpne0d 12945 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0)
3015, 19, 24, 26, 28, 29rlimdiv 15560 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1))
31 rpre 12905 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
32 chpcl 27081 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
3433recnd 11151 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
3513, 34syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ)
3613rpcnne0d 12949 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
375rpcnne0d 12949 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0))
3817rpcnne0d 12949 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
39 divdivdiv 11833 . . . . . . . 8 ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
4035, 36, 37, 38, 39syl22anc 838 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
416recnd 11151 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
4241, 35mulcomd 11144 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥))
4342oveq2d 7371 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)))
44 chtcl 27066 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4531, 44syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
4645recnd 11151 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ)
4713, 46syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
48 divcan5 11834 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
4947, 36, 37, 48syl3anc 1373 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
5040, 43, 493eqtrd 2772 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥))
5150mpteq2ia 5190 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
52 resmpt 5993 . . . . . 6 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5320, 52ax-mp 5 . . . . 5 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
5451, 53eqtr4i 2759 . . . 4 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
55 1div1e1 11823 . . . 4 (1 / 1) = 1
5630, 54, 553brtr3g 5128 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
57 rerpdivcl 12928 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5845, 57mpancom 688 . . . . . . 7 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5958adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
6059recnd 11151 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
6160fmpttd 7057 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ)
62 rpssre 12904 . . . . 5 + ⊆ ℝ
6362a1i 11 . . . 4 (⊤ → ℝ+ ⊆ ℝ)
641a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
6561, 63, 64rlimresb 15479 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1))
6656, 65mpbird 257 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
6766mptru 1548 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2929  wss 3898   class class class wbr 5095  cmpt 5176  cres 5623  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   · cmul 11022  +∞cpnf 11154   < clt 11157  cle 11158   / cdiv 11785  2c2 12191  +crp 12896  [,)cico 13254  𝑟 crli 15399  θccht 27048  ψcchp 27050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-o1 15404  df-lo1 15405  df-sum 15601  df-ef 15981  df-e 15982  df-sin 15983  df-cos 15984  df-tan 15985  df-pi 15986  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-ulm 26333  df-log 26512  df-cxp 26513  df-atan 26824  df-em 26950  df-cht 27054  df-vma 27055  df-chp 27056  df-ppi 27057  df-mu 27058
This theorem is referenced by:  pnt  27572
  Copyright terms: Public domain W3C validator