![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnt2 | Structured version Visualization version GIF version |
Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
Ref | Expression |
---|---|
pnt2 | ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12227 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
2 | elicopnf 13362 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
4 | chprpcl 26555 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+) | |
5 | 3, 4 | sylbi 216 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+) |
6 | 3 | simplbi 498 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
7 | 0red 11158 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
8 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
9 | 2pos 12256 | . . . . . . . . . 10 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
11 | 3 | simprbi 497 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
12 | 7, 8, 6, 10, 11 | ltletrd 11315 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
13 | 6, 12 | elrpd 12954 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
14 | 5, 13 | rpdivcld 12974 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
15 | 14 | adantl 482 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
16 | chtrpcl 26524 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
17 | 3, 16 | sylbi 216 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
18 | 5, 17 | rpdivcld 12974 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
19 | 18 | adantl 482 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
20 | 13 | ssriv 3948 | . . . . . . 7 ⊢ (2[,)+∞) ⊆ ℝ+ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
22 | pnt3 26960 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
24 | 21, 23 | rlimres2 15443 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
25 | chpchtlim 26827 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
26 | 25 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1) |
27 | ax-1ne0 11120 | . . . . . 6 ⊢ 1 ≠ 0 | |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
29 | 19 | rpne0d 12962 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0) |
30 | 15, 19, 24, 26, 28, 29 | rlimdiv 15530 | . . . 4 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1)) |
31 | rpre 12923 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
32 | chpcl 26473 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
33 | 31, 32 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
34 | 33 | recnd 11183 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
35 | 13, 34 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
36 | 13 | rpcnne0d 12966 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
37 | 5 | rpcnne0d 12966 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) |
38 | 17 | rpcnne0d 12966 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
39 | divdivdiv 11856 | . . . . . . . 8 ⊢ ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) | |
40 | 35, 36, 37, 38, 39 | syl22anc 837 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) |
41 | 6 | recnd 11183 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ) |
42 | 41, 35 | mulcomd 11176 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥)) |
43 | 42 | oveq2d 7373 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥))) |
44 | chtcl 26458 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ) | |
45 | 31, 44 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ) |
46 | 45 | recnd 11183 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ) |
47 | 13, 46 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ) |
48 | divcan5 11857 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) | |
49 | 47, 36, 37, 48 | syl3anc 1371 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) |
50 | 40, 43, 49 | 3eqtrd 2780 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥)) |
51 | 50 | mpteq2ia 5208 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
52 | resmpt 5991 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
53 | 20, 52 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
54 | 51, 53 | eqtr4i 2767 | . . . 4 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) |
55 | 1div1e1 11845 | . . . 4 ⊢ (1 / 1) = 1 | |
56 | 30, 54, 55 | 3brtr3g 5138 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1) |
57 | rerpdivcl 12945 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) | |
58 | 45, 57 | mpancom 686 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
59 | 58 | adantl 482 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
60 | 59 | recnd 11183 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ) |
61 | 60 | fmpttd 7063 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
62 | rpssre 12922 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
63 | 62 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
64 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
65 | 61, 63, 64 | rlimresb 15447 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)) |
66 | 56, 65 | mpbird 256 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1) |
67 | 66 | mptru 1548 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3910 class class class wbr 5105 ↦ cmpt 5188 ↾ cres 5635 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 · cmul 11056 +∞cpnf 11186 < clt 11189 ≤ cle 11190 / cdiv 11812 2c2 12208 ℝ+crp 12915 [,)cico 13266 ⇝𝑟 crli 15367 θccht 26440 ψcchp 26442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-xnn0 12486 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-o1 15372 df-lo1 15373 df-sum 15571 df-ef 15950 df-e 15951 df-sin 15952 df-cos 15953 df-tan 15954 df-pi 15955 df-dvds 16137 df-gcd 16375 df-prm 16548 df-pc 16709 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-ulm 25736 df-log 25912 df-cxp 25913 df-atan 26217 df-em 26342 df-cht 26446 df-vma 26447 df-chp 26448 df-ppi 26449 df-mu 26450 |
This theorem is referenced by: pnt 26962 |
Copyright terms: Public domain | W3C validator |