MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt2 Structured version   Visualization version   GIF version

Theorem pnt2 26750
Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt2 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt2
StepHypRef Expression
1 2re 12036 . . . . . . . . 9 2 ∈ ℝ
2 elicopnf 13166 . . . . . . . . 9 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
31, 2ax-mp 5 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4 chprpcl 26344 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+)
53, 4sylbi 216 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+)
63simplbi 498 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
7 0red 10967 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
81a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
9 2pos 12065 . . . . . . . . . 10 0 < 2
109a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 2)
113simprbi 497 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11124 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
136, 12elrpd 12758 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
145, 13rpdivcld 12778 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
1514adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
16 chtrpcl 26313 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
173, 16sylbi 216 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
185, 17rpdivcld 12778 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
1918adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
2013ssriv 3926 . . . . . . 7 (2[,)+∞) ⊆ ℝ+
2120a1i 11 . . . . . 6 (⊤ → (2[,)+∞) ⊆ ℝ+)
22 pnt3 26749 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
2322a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
2421, 23rlimres2 15259 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
25 chpchtlim 26616 . . . . . 6 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
2625a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
27 ax-1ne0 10929 . . . . . 6 1 ≠ 0
2827a1i 11 . . . . 5 (⊤ → 1 ≠ 0)
2919rpne0d 12766 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0)
3015, 19, 24, 26, 28, 29rlimdiv 15346 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1))
31 rpre 12727 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
32 chpcl 26262 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
3433recnd 10992 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
3513, 34syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ)
3613rpcnne0d 12770 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
375rpcnne0d 12770 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0))
3817rpcnne0d 12770 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
39 divdivdiv 11665 . . . . . . . 8 ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
4035, 36, 37, 38, 39syl22anc 836 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
416recnd 10992 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
4241, 35mulcomd 10985 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥))
4342oveq2d 7285 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)))
44 chtcl 26247 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4531, 44syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
4645recnd 10992 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ)
4713, 46syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
48 divcan5 11666 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
4947, 36, 37, 48syl3anc 1370 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
5040, 43, 493eqtrd 2782 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥))
5150mpteq2ia 5178 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
52 resmpt 5940 . . . . . 6 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5320, 52ax-mp 5 . . . . 5 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
5451, 53eqtr4i 2769 . . . 4 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
55 1div1e1 11654 . . . 4 (1 / 1) = 1
5630, 54, 553brtr3g 5108 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
57 rerpdivcl 12749 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5845, 57mpancom 685 . . . . . . 7 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5958adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
6059recnd 10992 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
6160fmpttd 6983 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ)
62 rpssre 12726 . . . . 5 + ⊆ ℝ
6362a1i 11 . . . 4 (⊤ → ℝ+ ⊆ ℝ)
641a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
6561, 63, 64rlimresb 15263 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1))
6656, 65mpbird 256 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
6766mptru 1546 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wss 3888   class class class wbr 5075  cmpt 5158  cres 5588  cfv 6428  (class class class)co 7269  cc 10858  cr 10859  0cc0 10860  1c1 10861   · cmul 10865  +∞cpnf 10995   < clt 10998  cle 10999   / cdiv 11621  2c2 12017  +crp 12719  [,)cico 13070  𝑟 crli 15183  θccht 26229  ψcchp 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938  ax-addf 10939  ax-mulf 10940
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-oadd 8290  df-er 8487  df-map 8606  df-pm 8607  df-ixp 8675  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-fsupp 9118  df-fi 9159  df-sup 9190  df-inf 9191  df-oi 9258  df-dju 9648  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-4 12027  df-5 12028  df-6 12029  df-7 12030  df-8 12031  df-9 12032  df-n0 12223  df-xnn0 12295  df-z 12309  df-dec 12427  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-ioo 13072  df-ioc 13073  df-ico 13074  df-icc 13075  df-fz 13229  df-fzo 13372  df-fl 13501  df-mod 13579  df-seq 13711  df-exp 13772  df-fac 13977  df-bc 14006  df-hash 14034  df-shft 14767  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-limsup 15169  df-clim 15186  df-rlim 15187  df-o1 15188  df-lo1 15189  df-sum 15387  df-ef 15766  df-e 15767  df-sin 15768  df-cos 15769  df-tan 15770  df-pi 15771  df-dvds 15953  df-gcd 16191  df-prm 16366  df-pc 16527  df-struct 16837  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-ress 16931  df-plusg 16964  df-mulr 16965  df-starv 16966  df-sca 16967  df-vsca 16968  df-ip 16969  df-tset 16970  df-ple 16971  df-ds 16973  df-unif 16974  df-hom 16975  df-cco 16976  df-rest 17122  df-topn 17123  df-0g 17141  df-gsum 17142  df-topgen 17143  df-pt 17144  df-prds 17147  df-xrs 17202  df-qtop 17207  df-imas 17208  df-xps 17210  df-mre 17284  df-mrc 17285  df-acs 17287  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-submnd 18420  df-mulg 18690  df-cntz 18912  df-cmn 19377  df-psmet 20578  df-xmet 20579  df-met 20580  df-bl 20581  df-mopn 20582  df-fbas 20583  df-fg 20584  df-cnfld 20587  df-top 22032  df-topon 22049  df-topsp 22071  df-bases 22085  df-cld 22159  df-ntr 22160  df-cls 22161  df-nei 22238  df-lp 22276  df-perf 22277  df-cn 22367  df-cnp 22368  df-haus 22455  df-cmp 22527  df-tx 22702  df-hmeo 22895  df-fil 22986  df-fm 23078  df-flim 23079  df-flf 23080  df-xms 23462  df-ms 23463  df-tms 23464  df-cncf 24030  df-limc 25019  df-dv 25020  df-ulm 25525  df-log 25701  df-cxp 25702  df-atan 26006  df-em 26131  df-cht 26235  df-vma 26236  df-chp 26237  df-ppi 26238  df-mu 26239
This theorem is referenced by:  pnt  26751
  Copyright terms: Public domain W3C validator