MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt2 Structured version   Visualization version   GIF version

Theorem pnt2 27576
Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt2 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt2
StepHypRef Expression
1 2re 12314 . . . . . . . . 9 2 ∈ ℝ
2 elicopnf 13462 . . . . . . . . 9 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
31, 2ax-mp 5 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4 chprpcl 27170 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+)
53, 4sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+)
63simplbi 497 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
7 0red 11238 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
81a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
9 2pos 12343 . . . . . . . . . 10 0 < 2
109a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 2)
113simprbi 496 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 11395 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
136, 12elrpd 13048 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
145, 13rpdivcld 13068 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
1514adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+)
16 chtrpcl 27137 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
173, 16sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
185, 17rpdivcld 13068 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
1918adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+)
2013ssriv 3962 . . . . . . 7 (2[,)+∞) ⊆ ℝ+
2120a1i 11 . . . . . 6 (⊤ → (2[,)+∞) ⊆ ℝ+)
22 pnt3 27575 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
2322a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
2421, 23rlimres2 15577 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
25 chpchtlim 27442 . . . . . 6 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
2625a1i 11 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
27 ax-1ne0 11198 . . . . . 6 1 ≠ 0
2827a1i 11 . . . . 5 (⊤ → 1 ≠ 0)
2919rpne0d 13056 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0)
3015, 19, 24, 26, 28, 29rlimdiv 15662 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1))
31 rpre 13017 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
32 chpcl 27086 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
3433recnd 11263 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
3513, 34syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ)
3613rpcnne0d 13060 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
375rpcnne0d 13060 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0))
3817rpcnne0d 13060 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
39 divdivdiv 11942 . . . . . . . 8 ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
4035, 36, 37, 38, 39syl22anc 838 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))))
416recnd 11263 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
4241, 35mulcomd 11256 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥))
4342oveq2d 7421 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)))
44 chtcl 27071 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4531, 44syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
4645recnd 11263 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ)
4713, 46syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
48 divcan5 11943 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
4947, 36, 37, 48syl3anc 1373 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥))
5040, 43, 493eqtrd 2774 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥))
5150mpteq2ia 5216 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
52 resmpt 6024 . . . . . 6 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5320, 52ax-mp 5 . . . . 5 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
5451, 53eqtr4i 2761 . . . 4 (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
55 1div1e1 11932 . . . 4 (1 / 1) = 1
5630, 54, 553brtr3g 5152 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
57 rerpdivcl 13039 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5845, 57mpancom 688 . . . . . . 7 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
5958adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
6059recnd 11263 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
6160fmpttd 7105 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ)
62 rpssre 13016 . . . . 5 + ⊆ ℝ
6362a1i 11 . . . 4 (⊤ → ℝ+ ⊆ ℝ)
641a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
6561, 63, 64rlimresb 15581 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1))
6656, 65mpbird 257 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
6766mptru 1547 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wss 3926   class class class wbr 5119  cmpt 5201  cres 5656  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008  [,)cico 13364  𝑟 crli 15501  θccht 27053  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-tan 16087  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338  df-log 26517  df-cxp 26518  df-atan 26829  df-em 26955  df-cht 27059  df-vma 27060  df-chp 27061  df-ppi 27062  df-mu 27063
This theorem is referenced by:  pnt  27577
  Copyright terms: Public domain W3C validator