![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnt2 | Structured version Visualization version GIF version |
Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
Ref | Expression |
---|---|
pnt2 | ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12338 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
2 | elicopnf 13482 | . . . . . . . . 9 ⊢ (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)) |
4 | chprpcl 27266 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ+) | |
5 | 3, 4 | sylbi 217 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℝ+) |
6 | 3 | simplbi 497 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ) |
7 | 0red 11262 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ) | |
8 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ) |
9 | 2pos 12367 | . . . . . . . . . 10 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 2) |
11 | 3 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥) |
12 | 7, 8, 6, 10, 11 | ltletrd 11419 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → 0 < 𝑥) |
13 | 6, 12 | elrpd 13072 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+) |
14 | 5, 13 | rpdivcld 13092 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
15 | 14 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ+) |
16 | chtrpcl 27233 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+) | |
17 | 3, 16 | sylbi 217 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+) |
18 | 5, 17 | rpdivcld 13092 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
19 | 18 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ+) |
20 | 13 | ssriv 3999 | . . . . . . 7 ⊢ (2[,)+∞) ⊆ ℝ+ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (2[,)+∞) ⊆ ℝ+) |
22 | pnt3 27671 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
24 | 21, 23 | rlimres2 15594 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) |
25 | chpchtlim 27538 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | |
26 | 25 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1) |
27 | ax-1ne0 11222 | . . . . . 6 ⊢ 1 ≠ 0 | |
28 | 27 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ≠ 0) |
29 | 19 | rpne0d 13080 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≠ 0) |
30 | 15, 19, 24, 26, 28, 29 | rlimdiv 15679 | . . . 4 ⊢ (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) ⇝𝑟 (1 / 1)) |
31 | rpre 13041 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
32 | chpcl 27182 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ) | |
33 | 31, 32 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ) |
34 | 33 | recnd 11287 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ) |
35 | 13, 34 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (ψ‘𝑥) ∈ ℂ) |
36 | 13 | rpcnne0d 13084 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
37 | 5 | rpcnne0d 13084 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) |
38 | 17 | rpcnne0d 13084 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) |
39 | divdivdiv 11966 | . . . . . . . 8 ⊢ ((((ψ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) ∧ (((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) | |
40 | 35, 36, 37, 38, 39 | syl22anc 839 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥)))) |
41 | 6 | recnd 11287 | . . . . . . . . 9 ⊢ (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ) |
42 | 41, 35 | mulcomd 11280 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (𝑥 · (ψ‘𝑥)) = ((ψ‘𝑥) · 𝑥)) |
43 | 42 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / (𝑥 · (ψ‘𝑥))) = (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥))) |
44 | chtcl 27167 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ) | |
45 | 31, 44 | syl 17 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ) |
46 | 45 | recnd 11287 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℂ) |
47 | 13, 46 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ) |
48 | divcan5 11967 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((ψ‘𝑥) ∈ ℂ ∧ (ψ‘𝑥) ≠ 0)) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) | |
49 | 47, 36, 37, 48 | syl3anc 1370 | . . . . . . 7 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) · (θ‘𝑥)) / ((ψ‘𝑥) · 𝑥)) = ((θ‘𝑥) / 𝑥)) |
50 | 40, 43, 49 | 3eqtrd 2779 | . . . . . 6 ⊢ (𝑥 ∈ (2[,)+∞) → (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥))) = ((θ‘𝑥) / 𝑥)) |
51 | 50 | mpteq2ia 5251 | . . . . 5 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
52 | resmpt 6057 | . . . . . 6 ⊢ ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))) | |
53 | 20, 52 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
54 | 51, 53 | eqtr4i 2766 | . . . 4 ⊢ (𝑥 ∈ (2[,)+∞) ↦ (((ψ‘𝑥) / 𝑥) / ((ψ‘𝑥) / (θ‘𝑥)))) = ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) |
55 | 1div1e1 11956 | . . . 4 ⊢ (1 / 1) = 1 | |
56 | 30, 54, 55 | 3brtr3g 5181 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1) |
57 | rerpdivcl 13063 | . . . . . . . 8 ⊢ (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) | |
58 | 45, 57 | mpancom 688 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
59 | 58 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
60 | 59 | recnd 11287 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ) |
61 | 60 | fmpttd 7135 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)):ℝ+⟶ℂ) |
62 | rpssre 13040 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
63 | 62 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
64 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → 2 ∈ ℝ) |
65 | 61, 63, 64 | rlimresb 15598 | . . 3 ⊢ (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)) |
66 | 56, 65 | mpbird 257 | . 2 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1) |
67 | 66 | mptru 1544 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 +∞cpnf 11290 < clt 11293 ≤ cle 11294 / cdiv 11918 2c2 12319 ℝ+crp 13032 [,)cico 13386 ⇝𝑟 crli 15518 θccht 27149 ψcchp 27151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-o1 15523 df-lo1 15524 df-sum 15720 df-ef 16100 df-e 16101 df-sin 16102 df-cos 16103 df-tan 16104 df-pi 16105 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-ulm 26435 df-log 26613 df-cxp 26614 df-atan 26925 df-em 27051 df-cht 27155 df-vma 27156 df-chp 27157 df-ppi 27158 df-mu 27159 |
This theorem is referenced by: pnt 27673 |
Copyright terms: Public domain | W3C validator |