Step | Hyp | Ref
| Expression |
1 | | 1xr 10965 |
. . . . . 6
⊢ 1 ∈
ℝ* |
2 | | 1lt2 12074 |
. . . . . 6
⊢ 1 <
2 |
3 | | df-ioo 13012 |
. . . . . . 7
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
4 | | df-ico 13014 |
. . . . . . 7
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
5 | | xrltletr 12820 |
. . . . . . 7
⊢ ((1
∈ ℝ* ∧ 2 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((1 < 2 ∧ 2 ≤ 𝑤) → 1 < 𝑤)) |
6 | 3, 4, 5 | ixxss1 13026 |
. . . . . 6
⊢ ((1
∈ ℝ* ∧ 1 < 2) → (2[,)+∞) ⊆
(1(,)+∞)) |
7 | 1, 2, 6 | mp2an 688 |
. . . . 5
⊢
(2[,)+∞) ⊆ (1(,)+∞) |
8 | | resmpt 5934 |
. . . . 5
⊢
((2[,)+∞) ⊆ (1(,)+∞) → ((𝑥 ∈ (1(,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) =
(𝑥 ∈ (2[,)+∞)
↦ ((π‘𝑥) / (𝑥 / (log‘𝑥))))) |
9 | 7, 8 | mp1i 13 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥))))) |
10 | 7 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
(1(,)+∞)) |
11 | | ioossre 13069 |
. . . . . . . . . . 11
⊢
(1(,)+∞) ⊆ ℝ |
12 | 11 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ) |
14 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
15 | | pnfxr 10960 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
16 | | elico2 13072 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥 ∧ 𝑥 <
+∞))) |
17 | 14, 15, 16 | mp2an 688 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥 ∧ 𝑥 <
+∞)) |
18 | 17 | simp2bi 1144 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 2
≤ 𝑥) |
19 | | chtrpcl 26229 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(θ‘𝑥) ∈
ℝ+) |
20 | 13, 18, 19 | syl2anc 583 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ∈
ℝ+) |
21 | | 0red 10909 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 0
∈ ℝ) |
22 | | 1red 10907 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 1
∈ ℝ) |
23 | | 0lt1 11427 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
24 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 0
< 1) |
25 | | eliooord 13067 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
26 | 25 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 1
< 𝑥) |
27 | 21, 22, 12, 24, 26 | lttrd 11066 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) → 0
< 𝑥) |
28 | 12, 27 | elrpd 12698 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ+) |
29 | 10, 28 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ+) |
30 | 20, 29 | rpdivcld 12718 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) / 𝑥) ∈
ℝ+) |
31 | 30 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈
ℝ+) |
32 | | ppinncl 26228 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(π‘𝑥)
∈ ℕ) |
33 | 13, 18, 32 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℕ) |
34 | 33 | nnrpd 12699 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℝ+) |
35 | 12, 26 | rplogcld 25689 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) →
(log‘𝑥) ∈
ℝ+) |
36 | 10, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ∈
ℝ+) |
37 | 34, 36 | rpmulcld 12717 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
∈ ℝ+) |
38 | 20, 37 | rpdivcld 12718 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥)))
∈ ℝ+) |
39 | 38 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))) ∈
ℝ+) |
40 | 29 | ssriv 3921 |
. . . . . . . 8
⊢
(2[,)+∞) ⊆ ℝ+ |
41 | | resmpt 5934 |
. . . . . . . 8
⊢
((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦
((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) =
(𝑥 ∈ (2[,)+∞)
↦ ((θ‘𝑥)
/ 𝑥))) |
42 | 40, 41 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥)) ↾
(2[,)+∞)) = (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
43 | | pnt2 26666 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥))
⇝𝑟 1 |
44 | | rlimres 15195 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥))
⇝𝑟 1 → ((𝑥 ∈ ℝ+ ↦
((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
⇝𝑟 1) |
45 | 43, 44 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
⇝𝑟 1) |
46 | 42, 45 | eqbrtrrid 5106 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟
1) |
47 | | chtppilim 26528 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) ↦
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥))))
⇝𝑟 1 |
48 | 47 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) ⇝𝑟
1) |
49 | | ax-1ne0 10871 |
. . . . . . 7
⊢ 1 ≠
0 |
50 | 49 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1 ≠ 0) |
51 | 38 | rpne0d 12706 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥)))
≠ 0) |
52 | 51 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))) ≠ 0) |
53 | 31, 39, 46, 48, 50, 52 | rlimdiv 15285 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))))) ⇝𝑟 (1 /
1)) |
54 | 13 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℂ) |
55 | | chtcl 26163 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(θ‘𝑥) ∈
ℝ) |
56 | 12, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1(,)+∞) →
(θ‘𝑥) ∈
ℝ) |
57 | 56 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) →
(θ‘𝑥) ∈
ℂ) |
58 | 10, 57 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ∈
ℂ) |
59 | 54, 58 | mulcomd 10927 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 ·
(θ‘𝑥)) =
((θ‘𝑥) ·
𝑥)) |
60 | 59 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((θ‘𝑥) · ((π‘𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥))) |
61 | 37 | rpcnd 12703 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
∈ ℂ) |
62 | 29 | rpne0d 12706 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ≠ 0) |
63 | 20 | rpne0d 12706 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ≠
0) |
64 | 61, 54, 58, 62, 63 | divcan5d 11707 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
65 | 60, 64 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
66 | 37 | rpne0d 12706 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
≠ 0) |
67 | 58, 54, 58, 61, 62, 66, 63 | divdivdivd 11728 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) = (((θ‘𝑥) ·
((π‘𝑥)
· (log‘𝑥))) /
(𝑥 ·
(θ‘𝑥)))) |
68 | 33 | nncnd 11919 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℂ) |
69 | 36 | rpcnd 12703 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ∈
ℂ) |
70 | 36 | rpne0d 12706 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ≠
0) |
71 | 68, 54, 69, 62, 70 | divdiv2d 11713 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
72 | 65, 67, 71 | 3eqtr4d 2788 |
. . . . . 6
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) = ((π‘𝑥) / (𝑥 / (log‘𝑥)))) |
73 | 72 | mpteq2ia 5173 |
. . . . 5
⊢ (𝑥 ∈ (2[,)+∞) ↦
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) |
74 | | 1div1e1 11595 |
. . . . 5
⊢ (1 / 1) =
1 |
75 | 53, 73, 74 | 3brtr3g 5103 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟
1) |
76 | 9, 75 | eqbrtrd 5092 |
. . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞))
⇝𝑟 1) |
77 | | ppicl 26185 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ →
(π‘𝑥)
∈ ℕ0) |
78 | 12, 77 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) →
(π‘𝑥)
∈ ℕ0) |
79 | 78 | nn0red 12224 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
(π‘𝑥)
∈ ℝ) |
80 | 28, 35 | rpdivcld 12718 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
(𝑥 / (log‘𝑥)) ∈
ℝ+) |
81 | 79, 80 | rerpdivcld 12732 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) ∈
ℝ) |
82 | 81 | recnd 10934 |
. . . . . 6
⊢ (𝑥 ∈ (1(,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) ∈
ℂ) |
83 | 82 | adantl 481 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((π‘𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ) |
84 | 83 | fmpttd 6971 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))):(1(,)+∞)⟶ℂ) |
85 | 11 | a1i 11 |
. . . 4
⊢ (⊤
→ (1(,)+∞) ⊆ ℝ) |
86 | 14 | a1i 11 |
. . . 4
⊢ (⊤
→ 2 ∈ ℝ) |
87 | 84, 85, 86 | rlimresb 15202 |
. . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 ↔
((𝑥 ∈ (1(,)+∞)
↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞))
⇝𝑟 1)) |
88 | 76, 87 | mpbird 256 |
. 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟
1) |
89 | 88 | mptru 1546 |
1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) ⇝𝑟
1 |