MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Structured version   Visualization version   GIF version

Theorem pnt 27668
Description: The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem pnt
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 11343 . . . . . 6 1 ∈ ℝ*
2 1lt2 12458 . . . . . 6 1 < 2
3 df-ioo 13405 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
4 df-ico 13407 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrltletr 13213 . . . . . . 7 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝑤 ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ 𝑤) → 1 < 𝑤))
63, 4, 5ixxss1 13419 . . . . . 6 ((1 ∈ ℝ* ∧ 1 < 2) → (2[,)+∞) ⊆ (1(,)+∞))
71, 2, 6mp2an 691 . . . . 5 (2[,)+∞) ⊆ (1(,)+∞)
8 resmpt 6061 . . . . 5 ((2[,)+∞) ⊆ (1(,)+∞) → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
97, 8mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
107sseli 4004 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ (1(,)+∞))
11 ioossre 13462 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
1211sseli 4004 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
1310, 12syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
14 2re 12361 . . . . . . . . . . 11 2 ∈ ℝ
15 pnfxr 11338 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elico2 13465 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞)))
1714, 15, 16mp2an 691 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞))
1817simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
19 chtrpcl 27228 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
2013, 18, 19syl2anc 583 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
21 0red 11287 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 ∈ ℝ)
22 1red 11285 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 ∈ ℝ)
23 0lt1 11806 . . . . . . . . . . . 12 0 < 1
2423a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 < 1)
25 eliooord 13460 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2625simpld 494 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
2721, 22, 12, 24, 26lttrd 11445 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 0 < 𝑥)
2812, 27elrpd 13090 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+)
2910, 28syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
3020, 29rpdivcld 13110 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
3130adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
32 ppinncl 27227 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
3313, 18, 32syl2anc 583 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
3433nnrpd 13091 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
3512, 26rplogcld 26681 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
3610, 35syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
3734, 36rpmulcld 13109 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
3820, 37rpdivcld 13110 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
3938adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
4029ssriv 4012 . . . . . . . 8 (2[,)+∞) ⊆ ℝ+
41 resmpt 6061 . . . . . . . 8 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
4240, 41ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
43 pnt2 27667 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
44 rlimres 15598 . . . . . . . 8 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4543, 44mp1i 13 . . . . . . 7 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4642, 45eqbrtrrid 5202 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
47 chtppilim 27529 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
4847a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
49 ax-1ne0 11247 . . . . . . 7 1 ≠ 0
5049a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
5138rpne0d 13098 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5251adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5331, 39, 46, 48, 50, 52rlimdiv 15688 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
5413recnd 11312 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
55 chtcl 27162 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
5612, 55syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℝ)
5756recnd 11312 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℂ)
5810, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
5954, 58mulcomd 11305 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (𝑥 · (θ‘𝑥)) = ((θ‘𝑥) · 𝑥))
6059oveq2d 7459 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)))
6137rpcnd 13095 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
6229rpne0d 13098 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ≠ 0)
6320rpne0d 13098 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≠ 0)
6461, 54, 58, 62, 63divcan5d 12090 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6560, 64eqtrd 2780 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6637rpne0d 13098 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ≠ 0)
6758, 54, 58, 61, 62, 66, 63divdivdivd 12111 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))))
6833nncnd 12303 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
6936rpcnd 13095 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℂ)
7036rpne0d 13098 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ≠ 0)
7168, 54, 69, 62, 70divdiv2d 12096 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
7265, 67, 713eqtr4d 2790 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
7372mpteq2ia 5269 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥))))
74 1div1e1 11979 . . . . 5 (1 / 1) = 1
7553, 73, 743brtr3g 5199 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
769, 75eqbrtrd 5188 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1)
77 ppicl 27184 . . . . . . . . . 10 (𝑥 ∈ ℝ → (π𝑥) ∈ ℕ0)
7812, 77syl 17 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℕ0)
7978nn0red 12608 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℝ)
8028, 35rpdivcld 13110 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
8179, 80rerpdivcld 13124 . . . . . . 7 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℝ)
8281recnd 11312 . . . . . 6 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8382adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8483fmpttd 7144 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))):(1(,)+∞)⟶ℂ)
8511a1i 11 . . . 4 (⊤ → (1(,)+∞) ⊆ ℝ)
8614a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
8784, 85, 86rlimresb 15605 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 ↔ ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1))
8876, 87mpbird 257 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
8988mptru 1544 1 (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wss 3976   class class class wbr 5166  cmpt 5249  cres 5697  cfv 6568  (class class class)co 7443  cc 11176  cr 11177  0cc0 11178  1c1 11179   · cmul 11183  +∞cpnf 11315  *cxr 11317   < clt 11318  cle 11319   / cdiv 11941  cn 12287  2c2 12342  0cn0 12547  +crp 13051  (,)cioo 13401  [,)cico 13403  𝑟 crli 15525  logclog 26606  θccht 27144  πcppi 27147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-inf2 9704  ax-cnex 11234  ax-resscn 11235  ax-1cn 11236  ax-icn 11237  ax-addcl 11238  ax-addrcl 11239  ax-mulcl 11240  ax-mulrcl 11241  ax-mulcom 11242  ax-addass 11243  ax-mulass 11244  ax-distr 11245  ax-i2m1 11246  ax-1ne0 11247  ax-1rid 11248  ax-rnegex 11249  ax-rrecex 11250  ax-cnre 11251  ax-pre-lttri 11252  ax-pre-lttrn 11253  ax-pre-ltadd 11254  ax-pre-mulgt0 11255  ax-pre-sup 11256  ax-addf 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-se 5651  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-isom 6577  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-of 7708  df-om 7898  df-1st 8024  df-2nd 8025  df-supp 8196  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-1o 8516  df-2o 8517  df-oadd 8520  df-er 8757  df-map 8880  df-pm 8881  df-ixp 8950  df-en 8998  df-dom 8999  df-sdom 9000  df-fin 9001  df-fsupp 9426  df-fi 9474  df-sup 9505  df-inf 9506  df-oi 9573  df-dju 9964  df-card 10002  df-pnf 11320  df-mnf 11321  df-xr 11322  df-ltxr 11323  df-le 11324  df-sub 11516  df-neg 11517  df-div 11942  df-nn 12288  df-2 12350  df-3 12351  df-4 12352  df-5 12353  df-6 12354  df-7 12355  df-8 12356  df-9 12357  df-n0 12548  df-xnn0 12620  df-z 12634  df-dec 12753  df-uz 12898  df-q 13008  df-rp 13052  df-xneg 13169  df-xadd 13170  df-xmul 13171  df-ioo 13405  df-ioc 13406  df-ico 13407  df-icc 13408  df-fz 13562  df-fzo 13706  df-fl 13837  df-mod 13915  df-seq 14047  df-exp 14107  df-fac 14317  df-bc 14346  df-hash 14374  df-shft 15110  df-cj 15142  df-re 15143  df-im 15144  df-sqrt 15278  df-abs 15279  df-limsup 15511  df-clim 15528  df-rlim 15529  df-o1 15530  df-lo1 15531  df-sum 15729  df-ef 16109  df-e 16110  df-sin 16111  df-cos 16112  df-tan 16113  df-pi 16114  df-dvds 16297  df-gcd 16535  df-prm 16713  df-pc 16878  df-struct 17188  df-sets 17205  df-slot 17223  df-ndx 17235  df-base 17253  df-ress 17282  df-plusg 17318  df-mulr 17319  df-starv 17320  df-sca 17321  df-vsca 17322  df-ip 17323  df-tset 17324  df-ple 17325  df-ds 17327  df-unif 17328  df-hom 17329  df-cco 17330  df-rest 17476  df-topn 17477  df-0g 17495  df-gsum 17496  df-topgen 17497  df-pt 17498  df-prds 17501  df-xrs 17556  df-qtop 17561  df-imas 17562  df-xps 17564  df-mre 17638  df-mrc 17639  df-acs 17641  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-submnd 18813  df-mulg 19102  df-cntz 19351  df-cmn 19818  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22913  df-topon 22930  df-topsp 22952  df-bases 22966  df-cld 23040  df-ntr 23041  df-cls 23042  df-nei 23119  df-lp 23157  df-perf 23158  df-cn 23248  df-cnp 23249  df-haus 23336  df-cmp 23408  df-tx 23583  df-hmeo 23776  df-fil 23867  df-fm 23959  df-flim 23960  df-flf 23961  df-xms 24343  df-ms 24344  df-tms 24345  df-cncf 24915  df-limc 25913  df-dv 25914  df-ulm 26430  df-log 26608  df-cxp 26609  df-atan 26920  df-em 27046  df-cht 27150  df-vma 27151  df-chp 27152  df-ppi 27153  df-mu 27154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator