MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Structured version   Visualization version   GIF version

Theorem pnt 26667
Description: The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem pnt
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10965 . . . . . 6 1 ∈ ℝ*
2 1lt2 12074 . . . . . 6 1 < 2
3 df-ioo 13012 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
4 df-ico 13014 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrltletr 12820 . . . . . . 7 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝑤 ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ 𝑤) → 1 < 𝑤))
63, 4, 5ixxss1 13026 . . . . . 6 ((1 ∈ ℝ* ∧ 1 < 2) → (2[,)+∞) ⊆ (1(,)+∞))
71, 2, 6mp2an 688 . . . . 5 (2[,)+∞) ⊆ (1(,)+∞)
8 resmpt 5934 . . . . 5 ((2[,)+∞) ⊆ (1(,)+∞) → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
97, 8mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
107sseli 3913 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ (1(,)+∞))
11 ioossre 13069 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
1211sseli 3913 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
1310, 12syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
14 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
15 pnfxr 10960 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elico2 13072 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞)))
1714, 15, 16mp2an 688 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞))
1817simp2bi 1144 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
19 chtrpcl 26229 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
2013, 18, 19syl2anc 583 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
21 0red 10909 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 ∈ ℝ)
22 1red 10907 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 ∈ ℝ)
23 0lt1 11427 . . . . . . . . . . . 12 0 < 1
2423a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 < 1)
25 eliooord 13067 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2625simpld 494 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
2721, 22, 12, 24, 26lttrd 11066 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 0 < 𝑥)
2812, 27elrpd 12698 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+)
2910, 28syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
3020, 29rpdivcld 12718 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
3130adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
32 ppinncl 26228 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
3313, 18, 32syl2anc 583 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
3433nnrpd 12699 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
3512, 26rplogcld 25689 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
3610, 35syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
3734, 36rpmulcld 12717 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
3820, 37rpdivcld 12718 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
3938adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
4029ssriv 3921 . . . . . . . 8 (2[,)+∞) ⊆ ℝ+
41 resmpt 5934 . . . . . . . 8 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
4240, 41ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
43 pnt2 26666 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
44 rlimres 15195 . . . . . . . 8 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4543, 44mp1i 13 . . . . . . 7 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4642, 45eqbrtrrid 5106 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
47 chtppilim 26528 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
4847a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
49 ax-1ne0 10871 . . . . . . 7 1 ≠ 0
5049a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
5138rpne0d 12706 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5251adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5331, 39, 46, 48, 50, 52rlimdiv 15285 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
5413recnd 10934 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
55 chtcl 26163 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
5612, 55syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℝ)
5756recnd 10934 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℂ)
5810, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
5954, 58mulcomd 10927 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (𝑥 · (θ‘𝑥)) = ((θ‘𝑥) · 𝑥))
6059oveq2d 7271 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)))
6137rpcnd 12703 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
6229rpne0d 12706 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ≠ 0)
6320rpne0d 12706 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≠ 0)
6461, 54, 58, 62, 63divcan5d 11707 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6560, 64eqtrd 2778 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6637rpne0d 12706 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ≠ 0)
6758, 54, 58, 61, 62, 66, 63divdivdivd 11728 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))))
6833nncnd 11919 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
6936rpcnd 12703 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℂ)
7036rpne0d 12706 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ≠ 0)
7168, 54, 69, 62, 70divdiv2d 11713 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
7265, 67, 713eqtr4d 2788 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
7372mpteq2ia 5173 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥))))
74 1div1e1 11595 . . . . 5 (1 / 1) = 1
7553, 73, 743brtr3g 5103 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
769, 75eqbrtrd 5092 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1)
77 ppicl 26185 . . . . . . . . . 10 (𝑥 ∈ ℝ → (π𝑥) ∈ ℕ0)
7812, 77syl 17 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℕ0)
7978nn0red 12224 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℝ)
8028, 35rpdivcld 12718 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
8179, 80rerpdivcld 12732 . . . . . . 7 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℝ)
8281recnd 10934 . . . . . 6 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8382adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8483fmpttd 6971 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))):(1(,)+∞)⟶ℂ)
8511a1i 11 . . . 4 (⊤ → (1(,)+∞) ⊆ ℝ)
8614a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
8784, 85, 86rlimresb 15202 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 ↔ ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1))
8876, 87mpbird 256 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
8988mptru 1546 1 (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  +crp 12659  (,)cioo 13008  [,)cico 13010  𝑟 crli 15122  logclog 25615  θccht 26145  πcppi 26148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154  df-mu 26155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator