MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Structured version   Visualization version   GIF version

Theorem pnt 26196
Description: The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem pnt
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10689 . . . . . 6 1 ∈ ℝ*
2 1lt2 11796 . . . . . 6 1 < 2
3 df-ioo 12730 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
4 df-ico 12732 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrltletr 12538 . . . . . . 7 ((1 ∈ ℝ* ∧ 2 ∈ ℝ*𝑤 ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ 𝑤) → 1 < 𝑤))
63, 4, 5ixxss1 12744 . . . . . 6 ((1 ∈ ℝ* ∧ 1 < 2) → (2[,)+∞) ⊆ (1(,)+∞))
71, 2, 6mp2an 691 . . . . 5 (2[,)+∞) ⊆ (1(,)+∞)
8 resmpt 5883 . . . . 5 ((2[,)+∞) ⊆ (1(,)+∞) → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
97, 8mp1i 13 . . . 4 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
107sseli 3938 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ (1(,)+∞))
11 ioossre 12786 . . . . . . . . . . 11 (1(,)+∞) ⊆ ℝ
1211sseli 3938 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
1310, 12syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
14 2re 11699 . . . . . . . . . . 11 2 ∈ ℝ
15 pnfxr 10684 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elico2 12789 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞)))
1714, 15, 16mp2an 691 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥𝑥 < +∞))
1817simp2bi 1143 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
19 chtrpcl 25758 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
2013, 18, 19syl2anc 587 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ+)
21 0red 10633 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 ∈ ℝ)
22 1red 10631 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 ∈ ℝ)
23 0lt1 11151 . . . . . . . . . . . 12 0 < 1
2423a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 0 < 1)
25 eliooord 12784 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2625simpld 498 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
2721, 22, 12, 24, 26lttrd 10790 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → 0 < 𝑥)
2812, 27elrpd 12416 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+)
2910, 28syl 17 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
3020, 29rpdivcld 12436 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
3130adantl 485 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ ℝ+)
32 ppinncl 25757 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
3313, 18, 32syl2anc 587 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
3433nnrpd 12417 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
3512, 26rplogcld 25218 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
3610, 35syl 17 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
3734, 36rpmulcld 12435 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
3820, 37rpdivcld 12436 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
3938adantl 485 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
4029ssriv 3946 . . . . . . . 8 (2[,)+∞) ⊆ ℝ+
41 resmpt 5883 . . . . . . . 8 ((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
4240, 41ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥))
43 pnt2 26195 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1
44 rlimres 14906 . . . . . . . 8 ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4543, 44mp1i 13 . . . . . . 7 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) ⇝𝑟 1)
4642, 45eqbrtrrid 5078 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1)
47 chtppilim 26057 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
4847a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
49 ax-1ne0 10595 . . . . . . 7 1 ≠ 0
5049a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
5138rpne0d 12424 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5251adantl 485 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
5331, 39, 46, 48, 50, 52rlimdiv 14993 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
5413recnd 10658 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℂ)
55 chtcl 25692 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
5612, 55syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℝ)
5756recnd 10658 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) → (θ‘𝑥) ∈ ℂ)
5810, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℂ)
5954, 58mulcomd 10651 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (𝑥 · (θ‘𝑥)) = ((θ‘𝑥) · 𝑥))
6059oveq2d 7156 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)))
6137rpcnd 12421 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
6229rpne0d 12424 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ≠ 0)
6320rpne0d 12424 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≠ 0)
6461, 54, 58, 62, 63divcan5d 11431 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6560, 64eqtrd 2857 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
6637rpne0d 12424 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ≠ 0)
6758, 54, 58, 61, 62, 66, 63divdivdivd 11452 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((θ‘𝑥) · ((π𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))))
6833nncnd 11641 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
6936rpcnd 12421 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℂ)
7036rpne0d 12424 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ≠ 0)
7168, 54, 69, 62, 70divdiv2d 11437 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
7265, 67, 713eqtr4d 2867 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
7372mpteq2ia 5133 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥))))
74 1div1e1 11319 . . . . 5 (1 / 1) = 1
7553, 73, 743brtr3g 5075 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
769, 75eqbrtrd 5064 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1)
77 ppicl 25714 . . . . . . . . . 10 (𝑥 ∈ ℝ → (π𝑥) ∈ ℕ0)
7812, 77syl 17 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℕ0)
7978nn0red 11944 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (π𝑥) ∈ ℝ)
8028, 35rpdivcld 12436 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
8179, 80rerpdivcld 12450 . . . . . . 7 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℝ)
8281recnd 10658 . . . . . 6 (𝑥 ∈ (1(,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8382adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ)
8483fmpttd 6861 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))):(1(,)+∞)⟶ℂ)
8511a1i 11 . . . 4 (⊤ → (1(,)+∞) ⊆ ℝ)
8614a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
8784, 85, 86rlimresb 14913 . . 3 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 ↔ ((𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) ⇝𝑟 1))
8876, 87mpbird 260 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1)
8988mptru 1545 1 (𝑥 ∈ (1(,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 209  w3a 1084   = wceq 1538  wtru 1539  wcel 2114  wne 3011  wss 3908   class class class wbr 5042  cmpt 5122  cres 5534  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  +crp 12377  (,)cioo 12726  [,)cico 12728  𝑟 crli 14833  logclog 25144  θccht 25674  πcppi 25677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-o1 14838  df-lo1 14839  df-sum 15034  df-ef 15412  df-e 15413  df-sin 15414  df-cos 15415  df-tan 15416  df-pi 15417  df-dvds 15599  df-gcd 15833  df-prm 16005  df-pc 16163  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-ulm 24970  df-log 25146  df-cxp 25147  df-atan 25451  df-em 25576  df-cht 25680  df-vma 25681  df-chp 25682  df-ppi 25683  df-mu 25684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator