Step | Hyp | Ref
| Expression |
1 | | 1xr 10436 |
. . . . . 6
⊢ 1 ∈
ℝ* |
2 | | 1lt2 11553 |
. . . . . 6
⊢ 1 <
2 |
3 | | df-ioo 12491 |
. . . . . . 7
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
4 | | df-ico 12493 |
. . . . . . 7
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
5 | | xrltletr 12300 |
. . . . . . 7
⊢ ((1
∈ ℝ* ∧ 2 ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ ((1 < 2 ∧ 2 ≤ 𝑤) → 1 < 𝑤)) |
6 | 3, 4, 5 | ixxss1 12505 |
. . . . . 6
⊢ ((1
∈ ℝ* ∧ 1 < 2) → (2[,)+∞) ⊆
(1(,)+∞)) |
7 | 1, 2, 6 | mp2an 682 |
. . . . 5
⊢
(2[,)+∞) ⊆ (1(,)+∞) |
8 | | resmpt 5699 |
. . . . 5
⊢
((2[,)+∞) ⊆ (1(,)+∞) → ((𝑥 ∈ (1(,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) =
(𝑥 ∈ (2[,)+∞)
↦ ((π‘𝑥) / (𝑥 / (log‘𝑥))))) |
9 | 7, 8 | mp1i 13 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞)) = (𝑥 ∈ (2[,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥))))) |
10 | 7 | sseli 3817 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
(1(,)+∞)) |
11 | | ioossre 12547 |
. . . . . . . . . . 11
⊢
(1(,)+∞) ⊆ ℝ |
12 | 11 | sseli 3817 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ) |
14 | | 2re 11449 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
15 | | pnfxr 10430 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
16 | | elico2 12549 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥 ∧ 𝑥 <
+∞))) |
17 | 14, 15, 16 | mp2an 682 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥 ∧ 𝑥 <
+∞)) |
18 | 17 | simp2bi 1137 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 2
≤ 𝑥) |
19 | | chtrpcl 25353 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(θ‘𝑥) ∈
ℝ+) |
20 | 13, 18, 19 | syl2anc 579 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ∈
ℝ+) |
21 | | 0red 10380 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 0
∈ ℝ) |
22 | | 1re 10376 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
23 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 1
∈ ℝ) |
24 | | 0lt1 10897 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 0
< 1) |
26 | | eliooord 12545 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
27 | 26 | simpld 490 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) → 1
< 𝑥) |
28 | 21, 23, 12, 25, 27 | lttrd 10537 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) → 0
< 𝑥) |
29 | 12, 28 | elrpd 12178 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ+) |
30 | 10, 29 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ+) |
31 | 20, 30 | rpdivcld 12198 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) / 𝑥) ∈
ℝ+) |
32 | 31 | adantl 475 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈
ℝ+) |
33 | | ppinncl 25352 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(π‘𝑥)
∈ ℕ) |
34 | 13, 18, 33 | syl2anc 579 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℕ) |
35 | 34 | nnrpd 12179 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℝ+) |
36 | 12, 27 | rplogcld 24812 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) →
(log‘𝑥) ∈
ℝ+) |
37 | 10, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ∈
ℝ+) |
38 | 35, 37 | rpmulcld 12197 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
∈ ℝ+) |
39 | 20, 38 | rpdivcld 12198 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥)))
∈ ℝ+) |
40 | 39 | adantl 475 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))) ∈
ℝ+) |
41 | 30 | ssriv 3825 |
. . . . . . . 8
⊢
(2[,)+∞) ⊆ ℝ+ |
42 | | resmpt 5699 |
. . . . . . . 8
⊢
((2[,)+∞) ⊆ ℝ+ → ((𝑥 ∈ ℝ+ ↦
((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞)) =
(𝑥 ∈ (2[,)+∞)
↦ ((θ‘𝑥)
/ 𝑥))) |
43 | 41, 42 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥)) ↾
(2[,)+∞)) = (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) |
44 | | pnt2 25754 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥))
⇝𝑟 1 |
45 | | rlimres 14697 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥))
⇝𝑟 1 → ((𝑥 ∈ ℝ+ ↦
((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
⇝𝑟 1) |
46 | 44, 45 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ↾ (2[,)+∞))
⇝𝑟 1) |
47 | 43, 46 | syl5eqbrr 4922 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟
1) |
48 | | chtppilim 25616 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) ↦
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥))))
⇝𝑟 1 |
49 | 48 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) ⇝𝑟
1) |
50 | | ax-1ne0 10341 |
. . . . . . 7
⊢ 1 ≠
0 |
51 | 50 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1 ≠ 0) |
52 | 39 | rpne0d 12186 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((θ‘𝑥) /
((π‘𝑥)
· (log‘𝑥)))
≠ 0) |
53 | 52 | adantl 475 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))) ≠ 0) |
54 | 32, 40, 47, 49, 51, 53 | rlimdiv 14784 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))))) ⇝𝑟 (1 /
1)) |
55 | 13 | recnd 10405 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℂ) |
56 | | chtcl 25287 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(θ‘𝑥) ∈
ℝ) |
57 | 12, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1(,)+∞) →
(θ‘𝑥) ∈
ℝ) |
58 | 57 | recnd 10405 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1(,)+∞) →
(θ‘𝑥) ∈
ℂ) |
59 | 10, 58 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ∈
ℂ) |
60 | 55, 59 | mulcomd 10398 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 ·
(θ‘𝑥)) =
((θ‘𝑥) ·
𝑥)) |
61 | 60 | oveq2d 6938 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((θ‘𝑥) · ((π‘𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥))) |
62 | 38 | rpcnd 12183 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
∈ ℂ) |
63 | 30 | rpne0d 12186 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ≠ 0) |
64 | 20 | rpne0d 12186 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) →
(θ‘𝑥) ≠
0) |
65 | 62, 55, 59, 63, 64 | divcan5d 11177 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / ((θ‘𝑥) · 𝑥)) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
66 | 61, 65 | eqtrd 2814 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥)
· ((π‘𝑥) · (log‘𝑥))) / (𝑥 · (θ‘𝑥))) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
67 | 38 | rpne0d 12186 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (log‘𝑥))
≠ 0) |
68 | 59, 55, 59, 62, 63, 67, 64 | divdivdivd 11198 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) = (((θ‘𝑥) ·
((π‘𝑥)
· (log‘𝑥))) /
(𝑥 ·
(θ‘𝑥)))) |
69 | 34 | nncnd 11392 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℂ) |
70 | 37 | rpcnd 12183 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ∈
ℂ) |
71 | 37 | rpne0d 12186 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ≠
0) |
72 | 69, 55, 70, 63, 71 | divdiv2d 11183 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) = (((π‘𝑥) · (log‘𝑥)) / 𝑥)) |
73 | 66, 68, 72 | 3eqtr4d 2824 |
. . . . . 6
⊢ (𝑥 ∈ (2[,)+∞) →
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) = ((π‘𝑥) / (𝑥 / (log‘𝑥)))) |
74 | 73 | mpteq2ia 4975 |
. . . . 5
⊢ (𝑥 ∈ (2[,)+∞) ↦
(((θ‘𝑥) / 𝑥) / ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) |
75 | | 1div1e1 11065 |
. . . . 5
⊢ (1 / 1) =
1 |
76 | 54, 74, 75 | 3brtr3g 4919 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟
1) |
77 | 9, 76 | eqbrtrd 4908 |
. . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞))
⇝𝑟 1) |
78 | | ppicl 25309 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ →
(π‘𝑥)
∈ ℕ0) |
79 | 12, 78 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) →
(π‘𝑥)
∈ ℕ0) |
80 | 79 | nn0red 11703 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
(π‘𝑥)
∈ ℝ) |
81 | 29, 36 | rpdivcld 12198 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
(𝑥 / (log‘𝑥)) ∈
ℝ+) |
82 | 80, 81 | rerpdivcld 12212 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) ∈
ℝ) |
83 | 82 | recnd 10405 |
. . . . . 6
⊢ (𝑥 ∈ (1(,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) ∈
ℂ) |
84 | 83 | adantl 475 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((π‘𝑥) / (𝑥 / (log‘𝑥))) ∈ ℂ) |
85 | 84 | fmpttd 6649 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))):(1(,)+∞)⟶ℂ) |
86 | 11 | a1i 11 |
. . . 4
⊢ (⊤
→ (1(,)+∞) ⊆ ℝ) |
87 | 14 | a1i 11 |
. . . 4
⊢ (⊤
→ 2 ∈ ℝ) |
88 | 85, 86, 87 | rlimresb 14704 |
. . 3
⊢ (⊤
→ ((𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 ↔
((𝑥 ∈ (1(,)+∞)
↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ↾ (2[,)+∞))
⇝𝑟 1)) |
89 | 77, 88 | mpbird 249 |
. 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟
1) |
90 | 89 | mptru 1609 |
1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((π‘𝑥) /
(𝑥 / (log‘𝑥)))) ⇝𝑟
1 |