Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndaddr Structured version   Visualization version   GIF version

Theorem omndaddr 33049
Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
Assertion
Ref Expression
omndaddr (((oppg𝑀) ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑍 + 𝑋) (𝑍 + 𝑌))

Proof of Theorem omndaddr
StepHypRef Expression
1 eqid 2734 . . . 4 (oppg𝑀) = (oppg𝑀)
2 omndadd.0 . . . 4 𝐵 = (Base‘𝑀)
31, 2oppgbas 19387 . . 3 𝐵 = (Base‘(oppg𝑀))
4 omndadd.1 . . . 4 = (le‘𝑀)
51, 4oppgle 32925 . . 3 = (le‘(oppg𝑀))
6 eqid 2734 . . 3 (+g‘(oppg𝑀)) = (+g‘(oppg𝑀))
73, 5, 6omndadd 33048 . 2 (((oppg𝑀) ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋(+g‘(oppg𝑀))𝑍) (𝑌(+g‘(oppg𝑀))𝑍))
8 omndadd.2 . . 3 + = (+g𝑀)
98, 1, 6oppgplus 19384 . 2 (𝑋(+g‘(oppg𝑀))𝑍) = (𝑍 + 𝑋)
108, 1, 6oppgplus 19384 . 2 (𝑌(+g‘(oppg𝑀))𝑍) = (𝑍 + 𝑌)
117, 9, 103brtr3g 5202 1 (((oppg𝑀) ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑍 + 𝑋) (𝑍 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2103   class class class wbr 5169  cfv 6572  (class class class)co 7445  Basecbs 17253  +gcplusg 17306  lecple 17313  oppgcoppg 19380  oMndcomnd 33039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-dec 12755  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-plusg 17319  df-ple 17326  df-oppg 19381  df-omnd 33041
This theorem is referenced by:  omndadd2rd  33051
  Copyright terms: Public domain W3C validator