MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfiniun Structured version   Visualization version   GIF version

Theorem ovolfiniun 25459
Description: The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
ovolfiniun ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘ 𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (vol*‘𝐵))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem ovolfiniun
Dummy variables 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3306 . . . 4 (𝑥 = ∅ → (∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ ∀𝑘 ∈ ∅ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
2 iuneq1 4989 . . . . . 6 (𝑥 = ∅ → 𝑘𝑥 𝐵 = 𝑘 ∈ ∅ 𝐵)
32fveq2d 6885 . . . . 5 (𝑥 = ∅ → (vol*‘ 𝑘𝑥 𝐵) = (vol*‘ 𝑘 ∈ ∅ 𝐵))
4 sumeq1 15710 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 (vol*‘𝐵) = Σ𝑘 ∈ ∅ (vol*‘𝐵))
53, 4breq12d 5137 . . . 4 (𝑥 = ∅ → ((vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵) ↔ (vol*‘ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)))
61, 5imbi12d 344 . . 3 (𝑥 = ∅ → ((∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ ∅ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵))))
7 raleq 3306 . . . 4 (𝑥 = 𝑦 → (∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ ∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
8 iuneq1 4989 . . . . . 6 (𝑥 = 𝑦 𝑘𝑥 𝐵 = 𝑘𝑦 𝐵)
98fveq2d 6885 . . . . 5 (𝑥 = 𝑦 → (vol*‘ 𝑘𝑥 𝐵) = (vol*‘ 𝑘𝑦 𝐵))
10 sumeq1 15710 . . . . 5 (𝑥 = 𝑦 → Σ𝑘𝑥 (vol*‘𝐵) = Σ𝑘𝑦 (vol*‘𝐵))
119, 10breq12d 5137 . . . 4 (𝑥 = 𝑦 → ((vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵) ↔ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵)))
127, 11imbi12d 344 . . 3 (𝑥 = 𝑦 → ((∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵)) ↔ (∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))))
13 raleq 3306 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
14 iuneq1 4989 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑘𝑥 𝐵 = 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1514fveq2d 6885 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (vol*‘ 𝑘𝑥 𝐵) = (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
16 sumeq1 15710 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 (vol*‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))
1715, 16breq12d 5137 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵) ↔ (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))
1813, 17imbi12d 344 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))))
19 raleq 3306 . . . 4 (𝑥 = 𝐴 → (∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ ∀𝑘𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
20 iuneq1 4989 . . . . . 6 (𝑥 = 𝐴 𝑘𝑥 𝐵 = 𝑘𝐴 𝐵)
2120fveq2d 6885 . . . . 5 (𝑥 = 𝐴 → (vol*‘ 𝑘𝑥 𝐵) = (vol*‘ 𝑘𝐴 𝐵))
22 sumeq1 15710 . . . . 5 (𝑥 = 𝐴 → Σ𝑘𝑥 (vol*‘𝐵) = Σ𝑘𝐴 (vol*‘𝐵))
2321, 22breq12d 5137 . . . 4 (𝑥 = 𝐴 → ((vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵) ↔ (vol*‘ 𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (vol*‘𝐵)))
2419, 23imbi12d 344 . . 3 (𝑥 = 𝐴 → ((∀𝑘𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑥 𝐵) ≤ Σ𝑘𝑥 (vol*‘𝐵)) ↔ (∀𝑘𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (vol*‘𝐵))))
25 0le0 12346 . . . . 5 0 ≤ 0
26 0iun 5044 . . . . . . 7 𝑘 ∈ ∅ 𝐵 = ∅
2726fveq2i 6884 . . . . . 6 (vol*‘ 𝑘 ∈ ∅ 𝐵) = (vol*‘∅)
28 ovol0 25451 . . . . . 6 (vol*‘∅) = 0
2927, 28eqtri 2759 . . . . 5 (vol*‘ 𝑘 ∈ ∅ 𝐵) = 0
30 sum0 15742 . . . . 5 Σ𝑘 ∈ ∅ (vol*‘𝐵) = 0
3125, 29, 303brtr4i 5154 . . . 4 (vol*‘ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)
3231a1i 11 . . 3 (∀𝑘 ∈ ∅ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵))
33 ssun1 4158 . . . . . 6 𝑦 ⊆ (𝑦 ∪ {𝑧})
34 ssralv 4032 . . . . . 6 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
3533, 34ax-mp 5 . . . . 5 (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
3635imim1i 63 . . . 4 ((∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵)))
37 simprl 770 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
38 nfcsb1v 3903 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐵
39 nfcv 2899 . . . . . . . . . . . . . . . 16 𝑘
4038, 39nfss 3956 . . . . . . . . . . . . . . 15 𝑘𝑚 / 𝑘𝐵 ⊆ ℝ
41 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑘vol*
4241, 38nffv 6891 . . . . . . . . . . . . . . . 16 𝑘(vol*‘𝑚 / 𝑘𝐵)
4342nfel1 2916 . . . . . . . . . . . . . . 15 𝑘(vol*‘𝑚 / 𝑘𝐵) ∈ ℝ
4440, 43nfan 1899 . . . . . . . . . . . . . 14 𝑘(𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
45 csbeq1a 3893 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
4645sseq1d 3995 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐵 ⊆ ℝ ↔ 𝑚 / 𝑘𝐵 ⊆ ℝ))
4745fveq2d 6885 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (vol*‘𝐵) = (vol*‘𝑚 / 𝑘𝐵))
4847eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((vol*‘𝐵) ∈ ℝ ↔ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
4946, 48anbi12d 632 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)))
5044, 49rspc 3594 . . . . . . . . . . . . 13 (𝑚 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)))
5137, 50mpan9 506 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ))
5251simpld 494 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → 𝑚 / 𝑘𝐵 ⊆ ℝ)
5352ralrimiva 3133 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 ⊆ ℝ)
54 iunss 5026 . . . . . . . . . 10 ( 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 ⊆ ℝ ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 ⊆ ℝ)
5553, 54sylibr 234 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 ⊆ ℝ)
56 iunss1 4987 . . . . . . . . . . . . 13 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵)
5733, 56ax-mp 5 . . . . . . . . . . . 12 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵
5857, 55sstrid 3975 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ)
59 simpll 766 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → 𝑦 ∈ Fin)
60 elun1 4162 . . . . . . . . . . . . 13 (𝑚𝑦𝑚 ∈ (𝑦 ∪ {𝑧}))
6151simprd 495 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
6260, 61sylan2 593 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) ∧ 𝑚𝑦) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
6359, 62fsumrecl 15755 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
64 simprr 772 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))
65 nfcv 2899 . . . . . . . . . . . . . 14 𝑚𝐵
6665, 38, 45cbviun 5017 . . . . . . . . . . . . 13 𝑘𝑦 𝐵 = 𝑚𝑦 𝑚 / 𝑘𝐵
6766fveq2i 6884 . . . . . . . . . . . 12 (vol*‘ 𝑘𝑦 𝐵) = (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵)
68 nfcv 2899 . . . . . . . . . . . . 13 𝑚(vol*‘𝐵)
6947, 68, 42cbvsum 15716 . . . . . . . . . . . 12 Σ𝑘𝑦 (vol*‘𝐵) = Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵)
7064, 67, 693brtr3g 5157 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ≤ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵))
71 ovollecl 25441 . . . . . . . . . . 11 (( 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ ∧ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) ∈ ℝ ∧ (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ≤ Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵)) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ)
7258, 63, 70, 71syl3anc 1373 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ)
73 ssun2 4159 . . . . . . . . . . . . 13 {𝑧} ⊆ (𝑦 ∪ {𝑧})
74 vsnid 4644 . . . . . . . . . . . . 13 𝑧 ∈ {𝑧}
7573, 74sselii 3960 . . . . . . . . . . . 12 𝑧 ∈ (𝑦 ∪ {𝑧})
76 nfcsb1v 3903 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵
7776, 39nfss 3956 . . . . . . . . . . . . . 14 𝑘𝑧 / 𝑘𝐵 ⊆ ℝ
7841, 76nffv 6891 . . . . . . . . . . . . . . 15 𝑘(vol*‘𝑧 / 𝑘𝐵)
7978nfel1 2916 . . . . . . . . . . . . . 14 𝑘(vol*‘𝑧 / 𝑘𝐵) ∈ ℝ
8077, 79nfan 1899 . . . . . . . . . . . . 13 𝑘(𝑧 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ)
81 csbeq1a 3893 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
8281sseq1d 3995 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → (𝐵 ⊆ ℝ ↔ 𝑧 / 𝑘𝐵 ⊆ ℝ))
8381fveq2d 6885 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (vol*‘𝐵) = (vol*‘𝑧 / 𝑘𝐵))
8483eleq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((vol*‘𝐵) ∈ ℝ ↔ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ))
8582, 84anbi12d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑧 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔ (𝑧 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ)))
8680, 85rspc 3594 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (𝑧 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ)))
8775, 37, 86mpsyl 68 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (𝑧 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ))
8887simprd 495 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ)
8972, 88readdcld 11269 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)) ∈ ℝ)
90 iunxun 5075 . . . . . . . . . . . 12 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 = ( 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵)
91 vex 3468 . . . . . . . . . . . . . 14 𝑧 ∈ V
92 csbeq1 3882 . . . . . . . . . . . . . 14 (𝑚 = 𝑧𝑚 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
9391, 92iunxsn 5072 . . . . . . . . . . . . 13 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵 = 𝑧 / 𝑘𝐵
9493uneq2i 4145 . . . . . . . . . . . 12 ( 𝑚𝑦 𝑚 / 𝑘𝐵 𝑚 ∈ {𝑧}𝑚 / 𝑘𝐵) = ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)
9590, 94eqtri 2759 . . . . . . . . . . 11 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 = ( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)
9695fveq2i 6884 . . . . . . . . . 10 (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) = (vol*‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵))
97 ovolun 25457 . . . . . . . . . . 11 ((( 𝑚𝑦 𝑚 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) ∈ ℝ) ∧ (𝑧 / 𝑘𝐵 ⊆ ℝ ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℝ)) → (vol*‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)) ≤ ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
9858, 72, 87, 97syl21anc 837 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘( 𝑚𝑦 𝑚 / 𝑘𝐵𝑧 / 𝑘𝐵)) ≤ ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
9996, 98eqbrtrid 5159 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) ≤ ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
100 ovollecl 25441 . . . . . . . . 9 (( 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵 ⊆ ℝ ∧ ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)) ∈ ℝ ∧ (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) ≤ ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵))) → (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) ∈ ℝ)
10155, 89, 99, 100syl3anc 1373 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) ∈ ℝ)
102 snfi 9062 . . . . . . . . . . 11 {𝑧} ∈ Fin
103 unfi 9190 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
104102, 103mpan2 691 . . . . . . . . . 10 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
105104ad2antrr 726 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) ∈ Fin)
106105, 61fsumrecl 15755 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵) ∈ ℝ)
10772, 63, 88, 70leadd1dd 11856 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)) ≤ (Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
108 simplr 768 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ¬ 𝑧𝑦)
109 disjsn 4692 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
110108, 109sylibr 234 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (𝑦 ∩ {𝑧}) = ∅)
111 eqidd 2737 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
11261recnd 11268 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘𝑚 / 𝑘𝐵) ∈ ℂ)
113110, 111, 105, 112fsumsplit 15762 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵) = (Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘𝑚 / 𝑘𝐵)))
11488recnd 11268 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘𝑧 / 𝑘𝐵) ∈ ℂ)
11592fveq2d 6885 . . . . . . . . . . . . 13 (𝑚 = 𝑧 → (vol*‘𝑚 / 𝑘𝐵) = (vol*‘𝑧 / 𝑘𝐵))
116115sumsn 15767 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (vol*‘𝑧 / 𝑘𝐵) ∈ ℂ) → Σ𝑚 ∈ {𝑧} (vol*‘𝑚 / 𝑘𝐵) = (vol*‘𝑧 / 𝑘𝐵))
11791, 114, 116sylancr 587 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ {𝑧} (vol*‘𝑚 / 𝑘𝐵) = (vol*‘𝑧 / 𝑘𝐵))
118117oveq2d 7426 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘𝑚 / 𝑘𝐵)) = (Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
119113, 118eqtrd 2771 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵) = (Σ𝑚𝑦 (vol*‘𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)))
120107, 119breqtrrd 5152 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → ((vol*‘ 𝑚𝑦 𝑚 / 𝑘𝐵) + (vol*‘𝑧 / 𝑘𝐵)) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵))
121101, 89, 106, 99, 120letrd 11397 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵))
12265, 38, 45cbviun 5017 . . . . . . . 8 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵
123122fveq2i 6884 . . . . . . 7 (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol*‘ 𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 / 𝑘𝐵)
12447, 68, 42cbvsum 15716 . . . . . . 7 Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘𝑚 / 𝑘𝐵)
125121, 123, 1243brtr4g 5158 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵))) → (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))
126125exp32 420 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵) → (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))))
127126a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))))
12836, 127syl5 34 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑘𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝑦 𝐵) ≤ Σ𝑘𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))))
1296, 12, 18, 24, 32, 128findcard2s 9184 . 2 (𝐴 ∈ Fin → (∀𝑘𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘ 𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (vol*‘𝐵)))
130129imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘ 𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  csb 3879  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   ciun 4972   class class class wbr 5124  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134   + caddc 11137  cle 11275  Σcsu 15707  vol*covol 25420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xadd 13134  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-xmet 21313  df-met 21314  df-ovol 25422
This theorem is referenced by:  volfiniun  25505  uniioombllem3a  25542  uniioombllem4  25544  i1fd  25639  i1fadd  25653  i1fmul  25654  volsupnfl  37694
  Copyright terms: Public domain W3C validator