| Step | Hyp | Ref
| Expression |
| 1 | | raleq 3306 |
. . . 4
⊢ (𝑥 = ∅ → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ ∅
(𝐵 ⊆ ℝ ∧
(vol*‘𝐵) ∈
ℝ))) |
| 2 | | iuneq1 4989 |
. . . . . 6
⊢ (𝑥 = ∅ → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
| 3 | 2 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = ∅ →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ ∅ 𝐵)) |
| 4 | | sumeq1 15710 |
. . . . 5
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ ∅ (vol*‘𝐵)) |
| 5 | 3, 4 | breq12d 5137 |
. . . 4
⊢ (𝑥 = ∅ →
((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵))) |
| 6 | 1, 5 | imbi12d 344 |
. . 3
⊢ (𝑥 = ∅ →
((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ ∅ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)))) |
| 7 | | raleq 3306 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
| 8 | | iuneq1 4989 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵) |
| 9 | 8 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = 𝑦 → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ 𝑦 𝐵)) |
| 10 | | sumeq1 15710 |
. . . . 5
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) |
| 11 | 9, 10 | breq12d 5137 |
. . . 4
⊢ (𝑥 = 𝑦 → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) |
| 12 | 7, 11 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝑦 → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)))) |
| 13 | | raleq 3306 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
| 14 | | iuneq1 4989 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 15 | 14 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
| 16 | | sumeq1 15710 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)) |
| 17 | 15, 16 | breq12d 5137 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))) |
| 18 | 13, 17 | imbi12d 344 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
| 19 | | raleq 3306 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
| 20 | | iuneq1 4989 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
| 21 | 20 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = 𝐴 → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ 𝐴 𝐵)) |
| 22 | | sumeq1 15710 |
. . . . 5
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) |
| 23 | 21, 22 | breq12d 5137 |
. . . 4
⊢ (𝑥 = 𝐴 → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵))) |
| 24 | 19, 23 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝐴 → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)))) |
| 25 | | 0le0 12346 |
. . . . 5
⊢ 0 ≤
0 |
| 26 | | 0iun 5044 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
| 27 | 26 | fveq2i 6884 |
. . . . . 6
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) = (vol*‘∅) |
| 28 | | ovol0 25451 |
. . . . . 6
⊢
(vol*‘∅) = 0 |
| 29 | 27, 28 | eqtri 2759 |
. . . . 5
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) = 0 |
| 30 | | sum0 15742 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (vol*‘𝐵) =
0 |
| 31 | 25, 29, 30 | 3brtr4i 5154 |
. . . 4
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵) |
| 32 | 31 | a1i 11 |
. . 3
⊢
(∀𝑘 ∈
∅ (𝐵 ⊆ ℝ
∧ (vol*‘𝐵) ∈
ℝ) → (vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)) |
| 33 | | ssun1 4158 |
. . . . . 6
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 34 | | ssralv 4032 |
. . . . . 6
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . 5
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
| 36 | 35 | imim1i 63 |
. . . 4
⊢
((∀𝑘 ∈
𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) |
| 37 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
| 38 | | nfcsb1v 3903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
| 39 | | nfcv 2899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘ℝ |
| 40 | 38, 39 | nfss 3956 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ |
| 41 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘vol* |
| 42 | 41, 38 | nffv 6891 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(vol*‘⦋𝑚 / 𝑘⦌𝐵) |
| 43 | 42 | nfel1 2916 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ |
| 44 | 40, 43 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 45 | | csbeq1a 3893 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
| 46 | 45 | sseq1d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐵 ⊆ ℝ ↔ ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ)) |
| 47 | 45 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (vol*‘𝐵) = (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 48 | 47 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((vol*‘𝐵) ∈ ℝ ↔
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 49 | 46, 48 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
| 50 | 44, 49 | rspc 3594 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
| 51 | 37, 50 | mpan9 506 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
| 52 | 51 | simpld 494 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 53 | 52 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 54 | | iunss 5026 |
. . . . . . . . . 10
⊢ (∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 55 | 53, 54 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 56 | | iunss1 4987 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ∪
𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
| 57 | 33, 56 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ∪
𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
| 58 | 57, 55 | sstrid 3975 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
| 59 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → 𝑦 ∈ Fin) |
| 60 | | elun1 4162 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
| 61 | 51 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 62 | 60, 61 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ 𝑦) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 63 | 59, 62 | fsumrecl 15755 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 64 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) |
| 65 | | nfcv 2899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚𝐵 |
| 66 | 65, 38, 45 | cbviun 5017 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 |
| 67 | 66 | fveq2i 6884 |
. . . . . . . . . . . 12
⊢
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) |
| 68 | | nfcv 2899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(vol*‘𝐵) |
| 69 | 47, 68, 42 | cbvsum 15716 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
𝑦 (vol*‘𝐵) = Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) |
| 70 | 64, 67, 69 | 3brtr3g 5157 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 71 | | ovollecl 25441 |
. . . . . . . . . . 11
⊢
((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 72 | 58, 63, 70, 71 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 73 | | ssun2 4159 |
. . . . . . . . . . . . 13
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
| 74 | | vsnid 4644 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ {𝑧} |
| 75 | 73, 74 | sselii 3960 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 76 | | nfcsb1v 3903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
| 77 | 76, 39 | nfss 3956 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ |
| 78 | 41, 76 | nffv 6891 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol*‘⦋𝑧 / 𝑘⦌𝐵) |
| 79 | 78 | nfel1 2916 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ |
| 80 | 77, 79 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
| 81 | | csbeq1a 3893 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 82 | 81 | sseq1d 3995 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → (𝐵 ⊆ ℝ ↔ ⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ)) |
| 83 | 81 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (vol*‘𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
| 84 | 83 | eleq1d 2820 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → ((vol*‘𝐵) ∈ ℝ ↔
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) |
| 85 | 82, 84 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑧 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ))) |
| 86 | 80, 85 | rspc 3594 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ))) |
| 87 | 75, 37, 86 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) |
| 88 | 87 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
| 89 | 72, 88 | readdcld 11269 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ∈ ℝ) |
| 90 | | iunxun 5075 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) |
| 91 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 92 | | csbeq1 3882 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 93 | 91, 92 | iunxsn 5072 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
| 94 | 93 | uneq2i 4145 |
. . . . . . . . . . . 12
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
| 95 | 90, 94 | eqtri 2759 |
. . . . . . . . . . 11
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
| 96 | 95 | fveq2i 6884 |
. . . . . . . . . 10
⊢
(vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = (vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) |
| 97 | | ovolun 25457 |
. . . . . . . . . . 11
⊢
(((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) ∧
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) →
(vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 98 | 58, 72, 87, 97 | syl21anc 837 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 99 | 96, 98 | eqbrtrid 5159 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 100 | | ovollecl 25441 |
. . . . . . . . 9
⊢
((∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 101 | 55, 89, 99, 100 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 102 | | snfi 9062 |
. . . . . . . . . . 11
⊢ {𝑧} ∈ Fin |
| 103 | | unfi 9190 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 104 | 102, 103 | mpan2 691 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 105 | 104 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 106 | 105, 61 | fsumrecl 15755 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
| 107 | 72, 63, 88, 70 | leadd1dd 11856 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ≤ (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 108 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ¬ 𝑧 ∈ 𝑦) |
| 109 | | disjsn 4692 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 110 | 108, 109 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∩ {𝑧}) = ∅) |
| 111 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 112 | 61 | recnd 11268 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℂ) |
| 113 | 110, 111,
105, 112 | fsumsplit 15762 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵))) |
| 114 | 88 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
| 115 | 92 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑧 → (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
| 116 | 115 | sumsn 15767 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) → Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
| 117 | 91, 114, 116 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
| 118 | 117 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 119 | 113, 118 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
| 120 | 107, 119 | breqtrrd 5152 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 121 | 101, 89, 106, 99, 120 | letrd 11397 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
| 122 | 65, 38, 45 | cbviun 5017 |
. . . . . . . 8
⊢ ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
| 123 | 122 | fveq2i 6884 |
. . . . . . 7
⊢
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
| 124 | 47, 68, 42 | cbvsum 15716 |
. . . . . . 7
⊢
Σ𝑘 ∈
(𝑦 ∪ {𝑧})(vol*‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) |
| 125 | 121, 123,
124 | 3brtr4g 5158 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)) |
| 126 | 125 | exp32 420 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
((vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵) → (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
| 127 | 126 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
| 128 | 36, 127 | syl5 34 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
| 129 | 6, 12, 18, 24, 32, 128 | findcard2s 9184 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵))) |
| 130 | 129 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) |