Step | Hyp | Ref
| Expression |
1 | | raleq 3323 |
. . . 4
⊢ (𝑥 = ∅ → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ ∅
(𝐵 ⊆ ℝ ∧
(vol*‘𝐵) ∈
ℝ))) |
2 | | iuneq1 4899 |
. . . . . 6
⊢ (𝑥 = ∅ → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
3 | 2 | fveq2d 6662 |
. . . . 5
⊢ (𝑥 = ∅ →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ ∅ 𝐵)) |
4 | | sumeq1 15093 |
. . . . 5
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ ∅ (vol*‘𝐵)) |
5 | 3, 4 | breq12d 5045 |
. . . 4
⊢ (𝑥 = ∅ →
((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵))) |
6 | 1, 5 | imbi12d 348 |
. . 3
⊢ (𝑥 = ∅ →
((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ ∅ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)))) |
7 | | raleq 3323 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
8 | | iuneq1 4899 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵) |
9 | 8 | fveq2d 6662 |
. . . . 5
⊢ (𝑥 = 𝑦 → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ 𝑦 𝐵)) |
10 | | sumeq1 15093 |
. . . . 5
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) |
11 | 9, 10 | breq12d 5045 |
. . . 4
⊢ (𝑥 = 𝑦 → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) |
12 | 7, 11 | imbi12d 348 |
. . 3
⊢ (𝑥 = 𝑦 → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)))) |
13 | | raleq 3323 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
14 | | iuneq1 4899 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
15 | 14 | fveq2d 6662 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
16 | | sumeq1 15093 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)) |
17 | 15, 16 | breq12d 5045 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵))) |
18 | 13, 17 | imbi12d 348 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
19 | | raleq 3323 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
20 | | iuneq1 4899 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ∪
𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
21 | 20 | fveq2d 6662 |
. . . . 5
⊢ (𝑥 = 𝐴 → (vol*‘∪ 𝑘 ∈ 𝑥 𝐵) = (vol*‘∪ 𝑘 ∈ 𝐴 𝐵)) |
22 | | sumeq1 15093 |
. . . . 5
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ 𝑥 (vol*‘𝐵) = Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) |
23 | 21, 22 | breq12d 5045 |
. . . 4
⊢ (𝑥 = 𝐴 → ((vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵) ↔ (vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵))) |
24 | 19, 23 | imbi12d 348 |
. . 3
⊢ (𝑥 = 𝐴 → ((∀𝑘 ∈ 𝑥 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑥 𝐵) ≤ Σ𝑘 ∈ 𝑥 (vol*‘𝐵)) ↔ (∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)))) |
25 | | 0le0 11775 |
. . . . 5
⊢ 0 ≤
0 |
26 | | 0iun 4951 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
27 | 26 | fveq2i 6661 |
. . . . . 6
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) = (vol*‘∅) |
28 | | ovol0 24193 |
. . . . . 6
⊢
(vol*‘∅) = 0 |
29 | 27, 28 | eqtri 2781 |
. . . . 5
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) = 0 |
30 | | sum0 15126 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (vol*‘𝐵) =
0 |
31 | 25, 29, 30 | 3brtr4i 5062 |
. . . 4
⊢
(vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵) |
32 | 31 | a1i 11 |
. . 3
⊢
(∀𝑘 ∈
∅ (𝐵 ⊆ ℝ
∧ (vol*‘𝐵) ∈
ℝ) → (vol*‘∪ 𝑘 ∈ ∅ 𝐵) ≤ Σ𝑘 ∈ ∅ (vol*‘𝐵)) |
33 | | ssun1 4077 |
. . . . . 6
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
34 | | ssralv 3958 |
. . . . . 6
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ))) |
35 | 33, 34 | ax-mp 5 |
. . . . 5
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
36 | 35 | imim1i 63 |
. . . 4
⊢
((∀𝑘 ∈
𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) |
37 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
38 | | nfcsb1v 3829 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 |
39 | | nfcv 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘ℝ |
40 | 38, 39 | nfss 3884 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ |
41 | | nfcv 2919 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘vol* |
42 | 41, 38 | nffv 6668 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(vol*‘⦋𝑚 / 𝑘⦌𝐵) |
43 | 42 | nfel1 2935 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ |
44 | 40, 43 | nfan 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
45 | | csbeq1a 3819 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑘⦌𝐵) |
46 | 45 | sseq1d 3923 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐵 ⊆ ℝ ↔ ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ)) |
47 | 45 | fveq2d 6662 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (vol*‘𝐵) = (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
48 | 47 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((vol*‘𝐵) ∈ ℝ ↔
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
49 | 46, 48 | anbi12d 633 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
50 | 44, 49 | rspc 3529 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ))) |
51 | 37, 50 | mpan9 510 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ)) |
52 | 51 | simpld 498 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
53 | 52 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∀𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
54 | | iunss 4934 |
. . . . . . . . . 10
⊢ (∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
55 | 53, 54 | sylibr 237 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
56 | | iunss1 4897 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ∪
𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
57 | 33, 56 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ∪
𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
58 | 57, 55 | sstrid 3903 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ) |
59 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → 𝑦 ∈ Fin) |
60 | | elun1 4081 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ 𝑦 → 𝑚 ∈ (𝑦 ∪ {𝑧})) |
61 | 51 | simprd 499 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
62 | 60, 61 | sylan2 595 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ 𝑦) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
63 | 59, 62 | fsumrecl 15139 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
64 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) |
65 | | nfcv 2919 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚𝐵 |
66 | 65, 38, 45 | cbviun 4925 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 |
67 | 66 | fveq2i 6661 |
. . . . . . . . . . . 12
⊢
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) = (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) |
68 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(vol*‘𝐵) |
69 | 68, 42, 47 | cbvsumi 15102 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
𝑦 (vol*‘𝐵) = Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) |
70 | 64, 67, 69 | 3brtr3g 5065 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
71 | | ovollecl 24183 |
. . . . . . . . . . 11
⊢
((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵)) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
72 | 58, 63, 70, 71 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
73 | | ssun2 4078 |
. . . . . . . . . . . . 13
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
74 | | vsnid 4559 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ {𝑧} |
75 | 73, 74 | sselii 3889 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
76 | | nfcsb1v 3829 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
77 | 76, 39 | nfss 3884 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ |
78 | 41, 76 | nffv 6668 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(vol*‘⦋𝑧 / 𝑘⦌𝐵) |
79 | 78 | nfel1 2935 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ |
80 | 77, 79 | nfan 1900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
81 | | csbeq1a 3819 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
82 | 81 | sseq1d 3923 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → (𝐵 ⊆ ℝ ↔ ⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ)) |
83 | 81 | fveq2d 6662 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (vol*‘𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
84 | 83 | eleq1d 2836 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → ((vol*‘𝐵) ∈ ℝ ↔
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) |
85 | 82, 84 | anbi12d 633 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑧 → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ↔
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ))) |
86 | 80, 85 | rspc 3529 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ))) |
87 | 75, 37, 86 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) |
88 | 87 | simprd 499 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
89 | 72, 88 | readdcld 10708 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ∈ ℝ) |
90 | | iunxun 4981 |
. . . . . . . . . . . 12
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) |
91 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
92 | | csbeq1 3808 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
93 | 91, 92 | iunxsn 4978 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
94 | 93 | uneq2i 4065 |
. . . . . . . . . . . 12
⊢ (∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ∪
𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐵) = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
95 | 90, 94 | eqtri 2781 |
. . . . . . . . . . 11
⊢ ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 = (∪
𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵) |
96 | 95 | fveq2i 6661 |
. . . . . . . . . 10
⊢
(vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) = (vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) |
97 | | ovolun 24199 |
. . . . . . . . . . 11
⊢
(((∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ (vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) ∧
(⦋𝑧 / 𝑘⦌𝐵 ⊆ ℝ ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ)) →
(vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
98 | 58, 72, 87, 97 | syl21anc 836 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘(∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵 ∪ ⦋𝑧 / 𝑘⦌𝐵)) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
99 | 96, 98 | eqbrtrid 5067 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
100 | | ovollecl 24183 |
. . . . . . . . 9
⊢
((∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 ⊆ ℝ ∧ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ∈ ℝ ∧ (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
101 | 55, 89, 99, 100 | syl3anc 1368 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
102 | | snfi 8614 |
. . . . . . . . . . 11
⊢ {𝑧} ∈ Fin |
103 | | unfi 8741 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
104 | 102, 103 | mpan2 690 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin) |
105 | 104 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) ∈ Fin) |
106 | 105, 61 | fsumrecl 15139 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℝ) |
107 | 72, 63, 88, 70 | leadd1dd 11292 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ≤ (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
108 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ¬ 𝑧 ∈ 𝑦) |
109 | | disjsn 4604 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
110 | 108, 109 | sylibr 237 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∩ {𝑧}) = ∅) |
111 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
112 | 61 | recnd 10707 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) ∧ 𝑚 ∈ (𝑦 ∪ {𝑧})) → (vol*‘⦋𝑚 / 𝑘⦌𝐵) ∈ ℂ) |
113 | 110, 111,
105, 112 | fsumsplit 15145 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵))) |
114 | 88 | recnd 10707 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
115 | 92 | fveq2d 6662 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑧 → (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
116 | 115 | sumsn 15149 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧
(vol*‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) → Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
117 | 91, 114, 116 | sylancr 590 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵) = (vol*‘⦋𝑧 / 𝑘⦌𝐵)) |
118 | 117 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + Σ𝑚 ∈ {𝑧} (vol*‘⦋𝑚 / 𝑘⦌𝐵)) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
119 | 113, 118 | eqtrd 2793 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) = (Σ𝑚 ∈ 𝑦 (vol*‘⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵))) |
120 | 107, 119 | breqtrrd 5060 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → ((vol*‘∪ 𝑚 ∈ 𝑦 ⦋𝑚 / 𝑘⦌𝐵) + (vol*‘⦋𝑧 / 𝑘⦌𝐵)) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
121 | 101, 89, 106, 99, 120 | letrd 10835 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) ≤ Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵)) |
122 | 65, 38, 45 | cbviun 4925 |
. . . . . . . 8
⊢ ∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = ∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵 |
123 | 122 | fveq2i 6661 |
. . . . . . 7
⊢
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (vol*‘∪ 𝑚 ∈ (𝑦 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐵) |
124 | 68, 42, 47 | cbvsumi 15102 |
. . . . . . 7
⊢
Σ𝑘 ∈
(𝑦 ∪ {𝑧})(vol*‘𝐵) = Σ𝑚 ∈ (𝑦 ∪ {𝑧})(vol*‘⦋𝑚 / 𝑘⦌𝐵) |
125 | 121, 123,
124 | 3brtr4g 5066 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵))) → (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)) |
126 | 125 | exp32 424 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
((vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵) → (vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
127 | 126 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
128 | 36, 127 | syl5 34 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ 𝑦 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝑦 𝐵) ≤ Σ𝑘 ∈ 𝑦 (vol*‘𝐵)) → (∀𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ≤ Σ𝑘 ∈ (𝑦 ∪ {𝑧})(vol*‘𝐵)))) |
129 | 6, 12, 18, 24, 32, 128 | findcard2s 8736 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵))) |
130 | 129 | imp 410 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) →
(vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) |