![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr2ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2ri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2759 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2757 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2720 |
This theorem is referenced by: funimacnv 6639 uniqs 8802 ackbij1lem13 10263 ef01bndlem 16168 cos2bnd 16172 divalglem2 16379 decexp2 17051 lefld 18591 smndex2dlinvh 18876 discmp 23322 unmbl 25486 sinhalfpilem 26418 log2cnv 26896 lgam1 27016 ip0i 30655 polid2i 30987 hh0v 30998 pjinormii 31506 dfdec100 32614 dpmul100 32641 dpmul 32657 dpmul4 32658 subfacp1lem3 34825 uniqsALTV 37833 cotrclrcl 43203 sqwvfoura 45645 sqwvfourb 45646 |
Copyright terms: Public domain | W3C validator |