Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr2ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2ri | ⊢ 𝐷 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2769 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtr2i 2767 | 1 ⊢ 𝐷 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: funimacnv 6499 uniqs 8524 ackbij1lem13 9919 ef01bndlem 15821 cos2bnd 15825 divalglem2 16032 decexp2 16704 lefld 18225 smndex2dlinvh 18471 discmp 22457 unmbl 24606 sinhalfpilem 25525 log2cnv 25999 lgam1 26118 ip0i 29088 polid2i 29420 hh0v 29431 pjinormii 29939 dfdec100 31046 dpmul100 31073 dpmul 31089 dpmul4 31090 subfacp1lem3 33044 uniqsALTV 36391 cotrclrcl 41239 sqwvfoura 43659 sqwvfourb 43660 |
Copyright terms: Public domain | W3C validator |