| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2ri | ⊢ 𝐷 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2757 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtr2i 2755 | 1 ⊢ 𝐷 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: funimacnv 6562 uniqs 8698 ackbij1lem13 10122 ef01bndlem 16093 cos2bnd 16097 divalglem2 16306 lefld 18498 smndex2dlinvh 18825 discmp 23313 unmbl 25465 sinhalfpilem 26399 log2cnv 26881 lgam1 27001 ip0i 30805 polid2i 31137 hh0v 31148 pjinormii 31656 dfdec100 32813 dpmul100 32877 dpmul 32893 dpmul4 32894 subfacp1lem3 35226 dmcnvep 38415 redvmptabs 42401 cotrclrcl 43783 sqwvfoura 46274 sqwvfourb 46275 |
| Copyright terms: Public domain | W3C validator |