MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eqtr2ri Structured version   Visualization version   GIF version

Theorem 3eqtr2ri 2765
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr2i.1 𝐴 = 𝐵
3eqtr2i.2 𝐶 = 𝐵
3eqtr2i.3 𝐶 = 𝐷
Assertion
Ref Expression
3eqtr2ri 𝐷 = 𝐴

Proof of Theorem 3eqtr2ri
StepHypRef Expression
1 3eqtr2i.1 . . 3 𝐴 = 𝐵
2 3eqtr2i.2 . . 3 𝐶 = 𝐵
31, 2eqtr4i 2761 . 2 𝐴 = 𝐶
4 3eqtr2i.3 . 2 𝐶 = 𝐷
53, 4eqtr2i 2759 1 𝐷 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727
This theorem is referenced by:  funimacnv  6617  uniqs  8791  ackbij1lem13  10245  ef01bndlem  16202  cos2bnd  16206  divalglem2  16414  lefld  18602  smndex2dlinvh  18895  discmp  23336  unmbl  25490  sinhalfpilem  26424  log2cnv  26906  lgam1  27026  ip0i  30806  polid2i  31138  hh0v  31149  pjinormii  31657  dfdec100  32809  dpmul100  32871  dpmul  32887  dpmul4  32888  subfacp1lem3  35204  uniqsALTV  38347  redvmptabs  42403  cotrclrcl  43766  sqwvfoura  46257  sqwvfourb  46258
  Copyright terms: Public domain W3C validator