MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eqtr2ri Structured version   Visualization version   GIF version

Theorem 3eqtr2ri 2773
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr2i.1 𝐴 = 𝐵
3eqtr2i.2 𝐶 = 𝐵
3eqtr2i.3 𝐶 = 𝐷
Assertion
Ref Expression
3eqtr2ri 𝐷 = 𝐴

Proof of Theorem 3eqtr2ri
StepHypRef Expression
1 3eqtr2i.1 . . 3 𝐴 = 𝐵
2 3eqtr2i.2 . . 3 𝐶 = 𝐵
31, 2eqtr4i 2769 . 2 𝐴 = 𝐶
4 3eqtr2i.3 . 2 𝐶 = 𝐷
53, 4eqtr2i 2767 1 𝐷 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730
This theorem is referenced by:  funimacnv  6515  uniqs  8566  ackbij1lem13  9988  ef01bndlem  15893  cos2bnd  15897  divalglem2  16104  decexp2  16776  lefld  18310  smndex2dlinvh  18556  discmp  22549  unmbl  24701  sinhalfpilem  25620  log2cnv  26094  lgam1  26213  ip0i  29187  polid2i  29519  hh0v  29530  pjinormii  30038  dfdec100  31144  dpmul100  31171  dpmul  31187  dpmul4  31188  subfacp1lem3  33144  uniqsALTV  36464  cotrclrcl  41350  sqwvfoura  43769  sqwvfourb  43770
  Copyright terms: Public domain W3C validator