![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdec100 | Structured version Visualization version GIF version |
Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dfdec100.a | ⊢ 𝐴 ∈ ℕ0 |
dfdec100.b | ⊢ 𝐵 ∈ ℕ0 |
dfdec100.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dfdec100 | ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12628 | . . 3 ⊢ ;𝐵𝐶 = ((;10 · 𝐵) + 𝐶) | |
2 | 1 | oveq2i 7373 | . 2 ⊢ ((;;100 · 𝐴) + ;𝐵𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
3 | 10nn0 12643 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
4 | 3 | dec0u 12646 | . . . . 5 ⊢ (;10 · ;10) = ;;100 |
5 | 3 | nn0cni 12432 | . . . . . 6 ⊢ ;10 ∈ ℂ |
6 | 5, 5 | mulcli 11169 | . . . . 5 ⊢ (;10 · ;10) ∈ ℂ |
7 | 4, 6 | eqeltrri 2835 | . . . 4 ⊢ ;;100 ∈ ℂ |
8 | dfdec100.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
9 | 8 | nn0cni 12432 | . . . 4 ⊢ 𝐴 ∈ ℂ |
10 | 7, 9 | mulcli 11169 | . . 3 ⊢ (;;100 · 𝐴) ∈ ℂ |
11 | dfdec100.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
12 | 11 | nn0cni 12432 | . . . 4 ⊢ 𝐵 ∈ ℂ |
13 | 5, 12 | mulcli 11169 | . . 3 ⊢ (;10 · 𝐵) ∈ ℂ |
14 | dfdec100.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
15 | 14 | recni 11176 | . . 3 ⊢ 𝐶 ∈ ℂ |
16 | 10, 13, 15 | addassi 11172 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
17 | dfdec10 12628 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
18 | dfdec10 12628 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
19 | 18 | oveq2i 7373 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
20 | 5, 9 | mulcli 11169 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
21 | 5, 20, 12 | adddii 11174 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
22 | 5, 5, 9 | mulassi 11173 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
23 | 4 | oveq1i 7372 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
24 | 22, 23 | eqtr3i 2767 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = (;;100 · 𝐴) |
25 | 24 | oveq1i 7372 | . . . . 5 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
26 | 19, 21, 25 | 3eqtri 2769 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
27 | 26 | oveq1i 7372 | . . 3 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) |
28 | 17, 27 | eqtr2i 2766 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ;;𝐴𝐵𝐶 |
29 | 2, 16, 28 | 3eqtr2ri 2772 | 1 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 (class class class)co 7362 ℂcc 11056 ℝcr 11057 0cc0 11058 1c1 11059 + caddc 11061 · cmul 11063 ℕ0cn0 12420 ;cdc 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-ltxr 11201 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-dec 12626 |
This theorem is referenced by: dpmul100 31795 dpmul1000 31797 dpmul4 31812 |
Copyright terms: Public domain | W3C validator |