Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdec100 Structured version   Visualization version   GIF version

Theorem dfdec100 32728
Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dfdec100.a 𝐴 ∈ ℕ0
dfdec100.b 𝐵 ∈ ℕ0
dfdec100.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dfdec100 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)

Proof of Theorem dfdec100
StepHypRef Expression
1 dfdec10 12628 . . 3 𝐵𝐶 = ((10 · 𝐵) + 𝐶)
21oveq2i 7380 . 2 ((100 · 𝐴) + 𝐵𝐶) = ((100 · 𝐴) + ((10 · 𝐵) + 𝐶))
3 10nn0 12643 . . . . . 6 10 ∈ ℕ0
43dec0u 12646 . . . . 5 (10 · 10) = 100
53nn0cni 12430 . . . . . 6 10 ∈ ℂ
65, 5mulcli 11157 . . . . 5 (10 · 10) ∈ ℂ
74, 6eqeltrri 2825 . . . 4 100 ∈ ℂ
8 dfdec100.a . . . . 5 𝐴 ∈ ℕ0
98nn0cni 12430 . . . 4 𝐴 ∈ ℂ
107, 9mulcli 11157 . . 3 (100 · 𝐴) ∈ ℂ
11 dfdec100.b . . . . 5 𝐵 ∈ ℕ0
1211nn0cni 12430 . . . 4 𝐵 ∈ ℂ
135, 12mulcli 11157 . . 3 (10 · 𝐵) ∈ ℂ
14 dfdec100.c . . . 4 𝐶 ∈ ℝ
1514recni 11164 . . 3 𝐶 ∈ ℂ
1610, 13, 15addassi 11160 . 2 (((100 · 𝐴) + (10 · 𝐵)) + 𝐶) = ((100 · 𝐴) + ((10 · 𝐵) + 𝐶))
17 dfdec10 12628 . . 3 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
18 dfdec10 12628 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1918oveq2i 7380 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
205, 9mulcli 11157 . . . . . 6 (10 · 𝐴) ∈ ℂ
215, 20, 12adddii 11162 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
225, 5, 9mulassi 11161 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
234oveq1i 7379 . . . . . . 7 ((10 · 10) · 𝐴) = (100 · 𝐴)
2422, 23eqtr3i 2754 . . . . . 6 (10 · (10 · 𝐴)) = (100 · 𝐴)
2524oveq1i 7379 . . . . 5 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = ((100 · 𝐴) + (10 · 𝐵))
2619, 21, 253eqtri 2756 . . . 4 (10 · 𝐴𝐵) = ((100 · 𝐴) + (10 · 𝐵))
2726oveq1i 7379 . . 3 ((10 · 𝐴𝐵) + 𝐶) = (((100 · 𝐴) + (10 · 𝐵)) + 𝐶)
2817, 27eqtr2i 2753 . 2 (((100 · 𝐴) + (10 · 𝐵)) + 𝐶) = 𝐴𝐵𝐶
292, 16, 283eqtr2ri 2759 1 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  0cn0 12418  cdc 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-dec 12626
This theorem is referenced by:  dpmul100  32790  dpmul1000  32792  dpmul4  32807
  Copyright terms: Public domain W3C validator