| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdec100 | Structured version Visualization version GIF version | ||
| Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dfdec100.a | ⊢ 𝐴 ∈ ℕ0 |
| dfdec100.b | ⊢ 𝐵 ∈ ℕ0 |
| dfdec100.c | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| dfdec100 | ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12586 | . . 3 ⊢ ;𝐵𝐶 = ((;10 · 𝐵) + 𝐶) | |
| 2 | 1 | oveq2i 7352 | . 2 ⊢ ((;;100 · 𝐴) + ;𝐵𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 3 | 10nn0 12601 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 4 | 3 | dec0u 12604 | . . . . 5 ⊢ (;10 · ;10) = ;;100 |
| 5 | 3 | nn0cni 12388 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 6 | 5, 5 | mulcli 11114 | . . . . 5 ⊢ (;10 · ;10) ∈ ℂ |
| 7 | 4, 6 | eqeltrri 2828 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 8 | dfdec100.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 9 | 8 | nn0cni 12388 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 10 | 7, 9 | mulcli 11114 | . . 3 ⊢ (;;100 · 𝐴) ∈ ℂ |
| 11 | dfdec100.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12388 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 13 | 5, 12 | mulcli 11114 | . . 3 ⊢ (;10 · 𝐵) ∈ ℂ |
| 14 | dfdec100.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
| 15 | 14 | recni 11121 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 16 | 10, 13, 15 | addassi 11117 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 17 | dfdec10 12586 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
| 18 | dfdec10 12586 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 19 | 18 | oveq2i 7352 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
| 20 | 5, 9 | mulcli 11114 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
| 21 | 5, 20, 12 | adddii 11119 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
| 22 | 5, 5, 9 | mulassi 11118 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
| 23 | 4 | oveq1i 7351 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
| 24 | 22, 23 | eqtr3i 2756 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = (;;100 · 𝐴) |
| 25 | 24 | oveq1i 7351 | . . . . 5 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 26 | 19, 21, 25 | 3eqtri 2758 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 27 | 26 | oveq1i 7351 | . . 3 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| 28 | 17, 27 | eqtr2i 2755 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ;;𝐴𝐵𝐶 |
| 29 | 2, 16, 28 | 3eqtr2ri 2761 | 1 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 ℕ0cn0 12376 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-dec 12584 |
| This theorem is referenced by: dpmul100 32869 dpmul1000 32871 dpmul4 32886 |
| Copyright terms: Public domain | W3C validator |