Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdec100 Structured version   Visualization version   GIF version

Theorem dfdec100 30123
Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dfdec100.a 𝐴 ∈ ℕ0
dfdec100.b 𝐵 ∈ ℕ0
dfdec100.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dfdec100 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)

Proof of Theorem dfdec100
StepHypRef Expression
1 dfdec10 11824 . . 3 𝐵𝐶 = ((10 · 𝐵) + 𝐶)
21oveq2i 6916 . 2 ((100 · 𝐴) + 𝐵𝐶) = ((100 · 𝐴) + ((10 · 𝐵) + 𝐶))
3 10nn0 11839 . . . . . 6 10 ∈ ℕ0
43dec0u 11843 . . . . 5 (10 · 10) = 100
53nn0cni 11631 . . . . . 6 10 ∈ ℂ
65, 5mulcli 10364 . . . . 5 (10 · 10) ∈ ℂ
74, 6eqeltrri 2903 . . . 4 100 ∈ ℂ
8 dfdec100.a . . . . 5 𝐴 ∈ ℕ0
98nn0cni 11631 . . . 4 𝐴 ∈ ℂ
107, 9mulcli 10364 . . 3 (100 · 𝐴) ∈ ℂ
11 dfdec100.b . . . . 5 𝐵 ∈ ℕ0
1211nn0cni 11631 . . . 4 𝐵 ∈ ℂ
135, 12mulcli 10364 . . 3 (10 · 𝐵) ∈ ℂ
14 dfdec100.c . . . 4 𝐶 ∈ ℝ
1514recni 10371 . . 3 𝐶 ∈ ℂ
1610, 13, 15addassi 10367 . 2 (((100 · 𝐴) + (10 · 𝐵)) + 𝐶) = ((100 · 𝐴) + ((10 · 𝐵) + 𝐶))
17 dfdec10 11824 . . 3 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
18 dfdec10 11824 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1918oveq2i 6916 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
205, 9mulcli 10364 . . . . . 6 (10 · 𝐴) ∈ ℂ
215, 20, 12adddii 10369 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
225, 5, 9mulassi 10368 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
234oveq1i 6915 . . . . . . 7 ((10 · 10) · 𝐴) = (100 · 𝐴)
2422, 23eqtr3i 2851 . . . . . 6 (10 · (10 · 𝐴)) = (100 · 𝐴)
2524oveq1i 6915 . . . . 5 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = ((100 · 𝐴) + (10 · 𝐵))
2619, 21, 253eqtri 2853 . . . 4 (10 · 𝐴𝐵) = ((100 · 𝐴) + (10 · 𝐵))
2726oveq1i 6915 . . 3 ((10 · 𝐴𝐵) + 𝐶) = (((100 · 𝐴) + (10 · 𝐵)) + 𝐶)
2817, 27eqtr2i 2850 . 2 (((100 · 𝐴) + (10 · 𝐵)) + 𝐶) = 𝐴𝐵𝐶
292, 16, 283eqtr2ri 2856 1 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  0cn0 11618  cdc 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-ltxr 10396  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-dec 11822
This theorem is referenced by:  dpmul100  30150  dpmul1000  30152  dpmul4  30167
  Copyright terms: Public domain W3C validator