![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdec100 | Structured version Visualization version GIF version |
Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dfdec100.a | ⊢ 𝐴 ∈ ℕ0 |
dfdec100.b | ⊢ 𝐵 ∈ ℕ0 |
dfdec100.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dfdec100 | ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 12676 | . . 3 ⊢ ;𝐵𝐶 = ((;10 · 𝐵) + 𝐶) | |
2 | 1 | oveq2i 7416 | . 2 ⊢ ((;;100 · 𝐴) + ;𝐵𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
3 | 10nn0 12691 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
4 | 3 | dec0u 12694 | . . . . 5 ⊢ (;10 · ;10) = ;;100 |
5 | 3 | nn0cni 12480 | . . . . . 6 ⊢ ;10 ∈ ℂ |
6 | 5, 5 | mulcli 11217 | . . . . 5 ⊢ (;10 · ;10) ∈ ℂ |
7 | 4, 6 | eqeltrri 2830 | . . . 4 ⊢ ;;100 ∈ ℂ |
8 | dfdec100.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
9 | 8 | nn0cni 12480 | . . . 4 ⊢ 𝐴 ∈ ℂ |
10 | 7, 9 | mulcli 11217 | . . 3 ⊢ (;;100 · 𝐴) ∈ ℂ |
11 | dfdec100.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
12 | 11 | nn0cni 12480 | . . . 4 ⊢ 𝐵 ∈ ℂ |
13 | 5, 12 | mulcli 11217 | . . 3 ⊢ (;10 · 𝐵) ∈ ℂ |
14 | dfdec100.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
15 | 14 | recni 11224 | . . 3 ⊢ 𝐶 ∈ ℂ |
16 | 10, 13, 15 | addassi 11220 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
17 | dfdec10 12676 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
18 | dfdec10 12676 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
19 | 18 | oveq2i 7416 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
20 | 5, 9 | mulcli 11217 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
21 | 5, 20, 12 | adddii 11222 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
22 | 5, 5, 9 | mulassi 11221 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
23 | 4 | oveq1i 7415 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
24 | 22, 23 | eqtr3i 2762 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = (;;100 · 𝐴) |
25 | 24 | oveq1i 7415 | . . . . 5 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
26 | 19, 21, 25 | 3eqtri 2764 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
27 | 26 | oveq1i 7415 | . . 3 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) |
28 | 17, 27 | eqtr2i 2761 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ;;𝐴𝐵𝐶 |
29 | 2, 16, 28 | 3eqtr2ri 2767 | 1 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 ℕ0cn0 12468 ;cdc 12673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-dec 12674 |
This theorem is referenced by: dpmul100 32050 dpmul1000 32052 dpmul4 32067 |
Copyright terms: Public domain | W3C validator |