| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdec100 | Structured version Visualization version GIF version | ||
| Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dfdec100.a | ⊢ 𝐴 ∈ ℕ0 |
| dfdec100.b | ⊢ 𝐵 ∈ ℕ0 |
| dfdec100.c | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| dfdec100 | ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12659 | . . 3 ⊢ ;𝐵𝐶 = ((;10 · 𝐵) + 𝐶) | |
| 2 | 1 | oveq2i 7401 | . 2 ⊢ ((;;100 · 𝐴) + ;𝐵𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 3 | 10nn0 12674 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 4 | 3 | dec0u 12677 | . . . . 5 ⊢ (;10 · ;10) = ;;100 |
| 5 | 3 | nn0cni 12461 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 6 | 5, 5 | mulcli 11188 | . . . . 5 ⊢ (;10 · ;10) ∈ ℂ |
| 7 | 4, 6 | eqeltrri 2826 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 8 | dfdec100.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 9 | 8 | nn0cni 12461 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 10 | 7, 9 | mulcli 11188 | . . 3 ⊢ (;;100 · 𝐴) ∈ ℂ |
| 11 | dfdec100.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12461 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 13 | 5, 12 | mulcli 11188 | . . 3 ⊢ (;10 · 𝐵) ∈ ℂ |
| 14 | dfdec100.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
| 15 | 14 | recni 11195 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 16 | 10, 13, 15 | addassi 11191 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 17 | dfdec10 12659 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
| 18 | dfdec10 12659 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 19 | 18 | oveq2i 7401 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
| 20 | 5, 9 | mulcli 11188 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
| 21 | 5, 20, 12 | adddii 11193 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
| 22 | 5, 5, 9 | mulassi 11192 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
| 23 | 4 | oveq1i 7400 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
| 24 | 22, 23 | eqtr3i 2755 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = (;;100 · 𝐴) |
| 25 | 24 | oveq1i 7400 | . . . . 5 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 26 | 19, 21, 25 | 3eqtri 2757 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 27 | 26 | oveq1i 7400 | . . 3 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| 28 | 17, 27 | eqtr2i 2754 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ;;𝐴𝐵𝐶 |
| 29 | 2, 16, 28 | 3eqtr2ri 2760 | 1 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: dpmul100 32824 dpmul1000 32826 dpmul4 32841 |
| Copyright terms: Public domain | W3C validator |