| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdec100 | Structured version Visualization version GIF version | ||
| Description: Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dfdec100.a | ⊢ 𝐴 ∈ ℕ0 |
| dfdec100.b | ⊢ 𝐵 ∈ ℕ0 |
| dfdec100.c | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| dfdec100 | ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 12709 | . . 3 ⊢ ;𝐵𝐶 = ((;10 · 𝐵) + 𝐶) | |
| 2 | 1 | oveq2i 7414 | . 2 ⊢ ((;;100 · 𝐴) + ;𝐵𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 3 | 10nn0 12724 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 4 | 3 | dec0u 12727 | . . . . 5 ⊢ (;10 · ;10) = ;;100 |
| 5 | 3 | nn0cni 12511 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 6 | 5, 5 | mulcli 11240 | . . . . 5 ⊢ (;10 · ;10) ∈ ℂ |
| 7 | 4, 6 | eqeltrri 2831 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 8 | dfdec100.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 9 | 8 | nn0cni 12511 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 10 | 7, 9 | mulcli 11240 | . . 3 ⊢ (;;100 · 𝐴) ∈ ℂ |
| 11 | dfdec100.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12511 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 13 | 5, 12 | mulcli 11240 | . . 3 ⊢ (;10 · 𝐵) ∈ ℂ |
| 14 | dfdec100.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
| 15 | 14 | recni 11247 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 16 | 10, 13, 15 | addassi 11243 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ((;;100 · 𝐴) + ((;10 · 𝐵) + 𝐶)) |
| 17 | dfdec10 12709 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
| 18 | dfdec10 12709 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 19 | 18 | oveq2i 7414 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
| 20 | 5, 9 | mulcli 11240 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
| 21 | 5, 20, 12 | adddii 11245 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
| 22 | 5, 5, 9 | mulassi 11244 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
| 23 | 4 | oveq1i 7413 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
| 24 | 22, 23 | eqtr3i 2760 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = (;;100 · 𝐴) |
| 25 | 24 | oveq1i 7413 | . . . . 5 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 26 | 19, 21, 25 | 3eqtri 2762 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;;100 · 𝐴) + (;10 · 𝐵)) |
| 27 | 26 | oveq1i 7413 | . . 3 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) |
| 28 | 17, 27 | eqtr2i 2759 | . 2 ⊢ (((;;100 · 𝐴) + (;10 · 𝐵)) + 𝐶) = ;;𝐴𝐵𝐶 |
| 29 | 2, 16, 28 | 3eqtr2ri 2765 | 1 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 ℕ0cn0 12499 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: dpmul100 32817 dpmul1000 32819 dpmul4 32834 |
| Copyright terms: Public domain | W3C validator |