Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfourb Structured version   Visualization version   GIF version

Theorem sqwvfourb 46184
Description: Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfourb.t 𝑇 = (2 · π)
sqwvfourb.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfourb.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
sqwvfourb (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfourb
StepHypRef Expression
1 pire 26514 . . . . . 6 π ∈ ℝ
21renegcli 11567 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 11260 . . . . . 6 0 ∈ ℝ
6 negpilt0 45230 . . . . . . 7 -π < 0
72, 5, 6ltleii 11381 . . . . . 6 -π ≤ 0
8 pipos 26516 . . . . . . 7 0 < π
95, 1, 8ltleii 11381 . . . . . 6 0 ≤ π
102, 1elicc2i 13449 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1340 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 elioore 13413 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
1413adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
15 1re 11258 . . . . . . . 8 1 ∈ ℝ
1615renegcli 11567 . . . . . . . 8 -1 ∈ ℝ
1715, 16ifcli 4577 . . . . . . 7 if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ
18 sqwvfourb.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1918fvmpt2 7026 . . . . . . 7 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2014, 17, 19sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2117a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
2221recnd 11286 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℂ)
2320, 22eqeltrd 2838 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℂ)
24 sqwvfourb.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2524nncnd 12279 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2625adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℂ)
2714recnd 11286 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
2826, 27mulcld 11278 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℂ)
2928sincld 16162 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
3023, 29mulcld 11278 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) ∈ ℂ)
31 elioore 13413 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3231, 17, 19sylancl 586 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfourb.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 13036 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 26517 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 13055 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2834 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4131, 40modcld 13911 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 26515 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43422timesi 12401 . . . . . . . . . . . . . . . . 17 (2 · π) = (π + π)
4434, 43eqtri 2762 . . . . . . . . . . . . . . . 16 𝑇 = (π + π)
4544oveq2i 7441 . . . . . . . . . . . . . . 15 (-π + 𝑇) = (-π + (π + π))
462recni 11272 . . . . . . . . . . . . . . . 16 -π ∈ ℂ
4746, 42, 42addassi 11268 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (-π + (π + π))
4842negidi 11575 . . . . . . . . . . . . . . . . . 18 (π + -π) = 0
4942, 46, 48addcomli 11450 . . . . . . . . . . . . . . . . 17 (-π + π) = 0
5049oveq1i 7440 . . . . . . . . . . . . . . . 16 ((-π + π) + π) = (0 + π)
5142addlidi 11446 . . . . . . . . . . . . . . . 16 (0 + π) = π
5250, 51eqtri 2762 . . . . . . . . . . . . . . 15 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2769 . . . . . . . . . . . . . 14 π = (-π + 𝑇)
5453a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → π = (-π + 𝑇))
552a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
56 2re 12337 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5756, 1remulcli 11274 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5834, 57eqeltri 2834 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
602rexri 11316 . . . . . . . . . . . . . . 15 -π ∈ ℝ*
61 0xr 11305 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
62 ioogtlb 45447 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6360, 61, 62mp3an12 1450 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6455, 31, 59, 63ltadd1dd 11871 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6554, 64eqbrtrd 5169 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6658recni 11272 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6766mullidi 11263 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
6867eqcomi 2743 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
6968oveq2i 7441 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7069oveq1i 7440 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7131, 59readdcld 11287 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
72 0red 11261 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
738a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7472, 33, 71, 73, 65lttrd 11419 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7572, 71, 74ltled 11406 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
76 iooltub 45462 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7760, 61, 76mp3an12 1450 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7831, 72, 59, 77ltadd1dd 11871 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
7959recnd 11286 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8079addlidd 11459 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8178, 80breqtrd 5173 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
82 modid 13932 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8371, 40, 75, 81, 82syl22anc 839 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
84 1zzd 12645 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
85 modcyc 13942 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8631, 40, 84, 85syl3anc 1370 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8770, 83, 863eqtr3a 2798 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8865, 87breqtrd 5173 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
8933, 41, 88ltnsymd 11407 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9089iffalsed 4541 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9132, 90eqtrd 2774 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9291adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝐹𝑥) = -1)
9392oveq1d 7445 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
9493mpteq2dva 5247 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))))
95 neg1cn 12377 . . . . . . 7 -1 ∈ ℂ
9695a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9724nnred 12278 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9897adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9931adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 11288 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100resincld 16175 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 13469 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 25613 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10697adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 13465 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 692 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3990 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 11288 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111resincld 16175 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 11261 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 sincn 26502 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
116 ax-resscn 11209 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 4004 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
119 ssid 4017 . . . . . . . . . . . 12 ℂ ⊆ ℂ
120119a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
121118, 25, 120constcncfg 45827 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
122118, 120idcncfg 45828 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
123121, 122mulcncf 25493 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
124115, 123cncfmpt1f 24953 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
125 cniccibl 25890 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
1263, 113, 124, 125syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
127103, 105, 112, 126iblss 25854 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
12896, 101, 127iblmulc2 25880 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
12994, 128eqeltrd 2838 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13060a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π ∈ ℝ*)
1311rexri 11316 . . . . . . . . . . . 12 π ∈ ℝ*
132131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
133 elioore 13413 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
1342a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π ∈ ℝ)
135 0red 11261 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
1366a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π < 0)
137 ioogtlb 45447 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
13861, 131, 137mp3an12 1450 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
139134, 135, 133, 136, 138lttrd 11419 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π < 𝑥)
140 iooltub 45462 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
14161, 131, 140mp3an12 1450 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 < π)
142130, 132, 133, 139, 141eliood 45450 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (-π(,)π))
143142, 20sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
14439a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
145135, 133, 138ltled 11406 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1461a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14758a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
148 2timesgt 45238 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → π < (2 · π))
14936, 148ax-mp 5 . . . . . . . . . . . . . . . 16 π < (2 · π)
150149, 34breqtrri 5174 . . . . . . . . . . . . . . 15 π < 𝑇
151150a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π < 𝑇)
152133, 146, 147, 141, 151lttrd 11419 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
153 modid 13932 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
154133, 144, 145, 152, 153syl22anc 839 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
155154, 141eqbrtrd 5169 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
156155iftrued 4538 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
157156adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
158143, 157eqtrd 2774 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = 1)
159158oveq1d 7445 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
160142, 29sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
161160mullidd 11276 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (1 · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
162159, 161eqtrd 2774 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
163162mpteq2dva 5247 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))))
164 ioossicc 13469 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
165164a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
166 ioombl 25613 . . . . . . 7 (0(,)π) ∈ dom vol
167166a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
16897adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
169 iccssre 13465 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1705, 1, 169mp2an 692 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
171170sseli 3990 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
172171adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
173168, 172remulcld 11288 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
174173resincld 16175 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
175170, 116sstri 4004 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
176175a1i 11 . . . . . . . . . 10 (𝜑 → (0[,]π) ⊆ ℂ)
177176, 25, 120constcncfg 45827 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
178176, 120idcncfg 45828 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
179177, 178mulcncf 25493 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
180115, 179cncfmpt1f 24953 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
181 cniccibl 25890 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
182113, 4, 180, 181syl3anc 1370 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
183165, 167, 174, 182iblss 25854 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
184163, 183eqeltrd 2838 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 30, 129, 184itgsplitioo 25887 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 7445 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π))
18791oveq1d 7445 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
188187adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
18960a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
190131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ*)
19131, 72, 33, 77, 73lttrd 11419 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → 𝑥 < π)
192189, 190, 31, 63, 191eliood 45450 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)π))
193192, 29sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
194193mulm1d 11712 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → (-1 · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
195188, 194eqtrd 2774 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
196195itgeq2dv 25831 . . . . . 6 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
197101, 127itgneg 25853 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
19824nnne0d 12313 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
1997a1i 11 . . . . . . . . . 10 (𝜑 → -π ≤ 0)
20025, 198, 3, 113, 199itgsincmulx 45929 . . . . . . . . 9 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁))
20124nnzd 12637 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
202 cosknegpi 45824 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
203201, 202syl 17 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
20425mul01d 11457 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 · 0) = 0)
205204fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → (cos‘(𝑁 · 0)) = (cos‘0))
206 cos0 16182 . . . . . . . . . . . . 13 (cos‘0) = 1
207205, 206eqtrdi 2790 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · 0)) = 1)
208203, 207oveq12d 7448 . . . . . . . . . . 11 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = (if(2 ∥ 𝑁, 1, -1) − 1))
209 1m1e0 12335 . . . . . . . . . . . . 13 (1 − 1) = 0
210 iftrue 4536 . . . . . . . . . . . . . 14 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = 1)
211210oveq1d 7445 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (1 − 1))
212 iftrue 4536 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = 0)
213209, 211, 2123eqtr4a 2800 . . . . . . . . . . . 12 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
214 iffalse 4539 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = -1)
215214oveq1d 7445 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (-1 − 1))
216 ax-1cn 11210 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
217 negdi2 11564 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
218216, 216, 217mp2an 692 . . . . . . . . . . . . . . 15 -(1 + 1) = (-1 − 1)
219218eqcomi 2743 . . . . . . . . . . . . . 14 (-1 − 1) = -(1 + 1)
220219a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (-1 − 1) = -(1 + 1))
221 1p1e2 12388 . . . . . . . . . . . . . . 15 (1 + 1) = 2
222221negeqi 11498 . . . . . . . . . . . . . 14 -(1 + 1) = -2
223 iffalse 4539 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = -2)
224222, 223eqtr4id 2793 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → -(1 + 1) = if(2 ∥ 𝑁, 0, -2))
225215, 220, 2243eqtrd 2778 . . . . . . . . . . . 12 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
226213, 225pm2.61i 182 . . . . . . . . . . 11 (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2)
227208, 226eqtrdi 2790 . . . . . . . . . 10 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = if(2 ∥ 𝑁, 0, -2))
228227oveq1d 7445 . . . . . . . . 9 (𝜑 → (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁) = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
229200, 228eqtrd 2774 . . . . . . . 8 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
230229negeqd 11499 . . . . . . 7 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = -(if(2 ∥ 𝑁, 0, -2) / 𝑁))
231 0cn 11250 . . . . . . . . . 10 0 ∈ ℂ
232 2cn 12338 . . . . . . . . . . 11 2 ∈ ℂ
233232negcli 11574 . . . . . . . . . 10 -2 ∈ ℂ
234231, 233ifcli 4577 . . . . . . . . 9 if(2 ∥ 𝑁, 0, -2) ∈ ℂ
235234a1i 11 . . . . . . . 8 (𝜑 → if(2 ∥ 𝑁, 0, -2) ∈ ℂ)
236235, 25, 198divnegd 12053 . . . . . . 7 (𝜑 → -(if(2 ∥ 𝑁, 0, -2) / 𝑁) = (-if(2 ∥ 𝑁, 0, -2) / 𝑁))
237 neg0 11552 . . . . . . . . . . 11 -0 = 0
238212negeqd 11499 . . . . . . . . . . 11 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = -0)
239 iftrue 4536 . . . . . . . . . . 11 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 0)
240237, 238, 2393eqtr4a 2800 . . . . . . . . . 10 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
241232negnegi 11576 . . . . . . . . . . 11 --2 = 2
242223negeqd 11499 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = --2)
243 iffalse 4539 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 2)
244241, 242, 2433eqtr4a 2800 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
245240, 244pm2.61i 182 . . . . . . . . 9 -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2)
246245oveq1i 7440 . . . . . . . 8 (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁)
247246a1i 11 . . . . . . 7 (𝜑 → (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
248230, 236, 2473eqtrd 2778 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
249196, 197, 2483eqtr2d 2780 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
250133, 17, 19sylancl 586 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
251250, 156eqtrd 2774 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
252251oveq1d 7445 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
253252adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
254253, 161eqtrd 2774 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
255254itgeq2dv 25831 . . . . . 6 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥)
2569a1i 11 . . . . . . 7 (𝜑 → 0 ≤ π)
25725, 198, 113, 4, 256itgsincmulx 45929 . . . . . 6 (𝜑 → ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁))
258 coskpi2 45821 . . . . . . . . . 10 (𝑁 ∈ ℤ → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
259201, 258syl 17 . . . . . . . . 9 (𝜑 → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
260207, 259oveq12d 7448 . . . . . . . 8 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = (1 − if(2 ∥ 𝑁, 1, -1)))
261210oveq2d 7446 . . . . . . . . . 10 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − 1))
262209, 261, 2393eqtr4a 2800 . . . . . . . . 9 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
263214oveq2d 7446 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − -1))
264216, 216subnegi 11585 . . . . . . . . . . 11 (1 − -1) = (1 + 1)
265264a1i 11 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − -1) = (1 + 1))
266221, 243eqtr4id 2793 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 + 1) = if(2 ∥ 𝑁, 0, 2))
267263, 265, 2663eqtrd 2778 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
268262, 267pm2.61i 182 . . . . . . . 8 (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2)
269260, 268eqtrdi 2790 . . . . . . 7 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = if(2 ∥ 𝑁, 0, 2))
270269oveq1d 7445 . . . . . 6 (𝜑 → (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
271255, 257, 2703eqtrd 2778 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
272249, 271oveq12d 7448 . . . 4 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
273231, 232ifcli 4577 . . . . . 6 if(2 ∥ 𝑁, 0, 2) ∈ ℂ
274273a1i 11 . . . . 5 (𝜑 → if(2 ∥ 𝑁, 0, 2) ∈ ℂ)
275274, 274, 25, 198divdird 12078 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
276239, 239oveq12d 7448 . . . . . . . . 9 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (0 + 0))
277 00id 11433 . . . . . . . . 9 (0 + 0) = 0
278276, 277eqtrdi 2790 . . . . . . . 8 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 0)
279278oveq1d 7445 . . . . . . 7 (2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
280279adantl 481 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
28125, 198div0d 12039 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
282281adantr 480 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / 𝑁) = 0)
283 iftrue 4536 . . . . . . . 8 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = 0)
284283eqcomd 2740 . . . . . . 7 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
285284adantl 481 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
286280, 282, 2853eqtrd 2778 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
287243, 243oveq12d 7448 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (2 + 2))
288 2p2e4 12398 . . . . . . . . 9 (2 + 2) = 4
289287, 288eqtrdi 2790 . . . . . . . 8 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 4)
290289oveq1d 7445 . . . . . . 7 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (4 / 𝑁))
291 iffalse 4539 . . . . . . 7 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = (4 / 𝑁))
292290, 291eqtr4d 2777 . . . . . 6 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
293292adantl 481 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
294286, 293pm2.61dan 813 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
295272, 275, 2943eqtr2d 2780 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
296295oveq1d 7445 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π) = (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π))
297283oveq1d 7445 . . . . 5 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
298297adantl 481 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
2995, 8gtneii 11370 . . . . . 6 π ≠ 0
30042, 299div0i 11998 . . . . 5 (0 / π) = 0
301300a1i 11 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / π) = 0)
302 iftrue 4536 . . . . . 6 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = 0)
303302eqcomd 2740 . . . . 5 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
304303adantl 481 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
305298, 301, 3043eqtrd 2778 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
306291oveq1d 7445 . . . . 5 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
307306adantl 481 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
308 4cn 12348 . . . . . . 7 4 ∈ ℂ
309308a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
31042a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
311299a1i 11 . . . . . 6 (𝜑 → π ≠ 0)
312309, 25, 310, 198, 311divdiv1d 12071 . . . . 5 (𝜑 → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
313312adantr 480 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
314 iffalse 4539 . . . . . 6 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = (4 / (𝑁 · π)))
315314eqcomd 2740 . . . . 5 (¬ 2 ∥ 𝑁 → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
316315adantl 481 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
317307, 313, 3163eqtrd 2778 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
318305, 317pm2.61dan 813 . 2 (𝜑 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
319186, 296, 3183eqtrd 2778 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wss 3962  ifcif 4530   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  4c4 12320  cz 12610  +crp 13031  (,)cioo 13383  [,]cicc 13386   mod cmo 13905  sincsin 16095  cosccos 16096  πcpi 16098  cdvds 16286  cnccncf 24915  volcvol 25511  𝐿1cibl 25665  citg 25666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916
This theorem is referenced by:  fouriersw  46186
  Copyright terms: Public domain W3C validator