Proof of Theorem sqwvfourb
Step | Hyp | Ref
| Expression |
1 | | pire 25615 |
. . . . . 6
⊢ π
∈ ℝ |
2 | 1 | renegcli 11282 |
. . . . 5
⊢ -π
∈ ℝ |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → -π ∈
ℝ) |
4 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → π ∈
ℝ) |
5 | | 0re 10977 |
. . . . . 6
⊢ 0 ∈
ℝ |
6 | | negpilt0 42819 |
. . . . . . 7
⊢ -π
< 0 |
7 | 2, 5, 6 | ltleii 11098 |
. . . . . 6
⊢ -π
≤ 0 |
8 | | pipos 25617 |
. . . . . . 7
⊢ 0 <
π |
9 | 5, 1, 8 | ltleii 11098 |
. . . . . 6
⊢ 0 ≤
π |
10 | 2, 1 | elicc2i 13145 |
. . . . . 6
⊢ (0 ∈
(-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤
π)) |
11 | 5, 7, 9, 10 | mpbir3an 1340 |
. . . . 5
⊢ 0 ∈
(-π[,]π) |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
(-π[,]π)) |
13 | | elioore 13109 |
. . . . . . . 8
⊢ (𝑥 ∈ (-π(,)π) →
𝑥 ∈
ℝ) |
14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → 𝑥 ∈
ℝ) |
15 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
16 | 15 | renegcli 11282 |
. . . . . . . 8
⊢ -1 ∈
ℝ |
17 | 15, 16 | ifcli 4506 |
. . . . . . 7
⊢ if((𝑥 mod 𝑇) < π, 1, -1) ∈
ℝ |
18 | | sqwvfourb.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) |
19 | 18 | fvmpt2 6886 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) →
(𝐹‘𝑥) = if((𝑥 mod 𝑇) < π, 1, -1)) |
20 | 14, 17, 19 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → (𝐹‘𝑥) = if((𝑥 mod 𝑇) < π, 1, -1)) |
21 | 17 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈
ℝ) |
22 | 21 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈
ℂ) |
23 | 20, 22 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → (𝐹‘𝑥) ∈ ℂ) |
24 | | sqwvfourb.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
25 | 24 | nncnd 11989 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℂ) |
26 | 25 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → 𝑁 ∈
ℂ) |
27 | 14 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → 𝑥 ∈
ℂ) |
28 | 26, 27 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℂ) |
29 | 28 | sincld 15839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) →
(sin‘(𝑁 ·
𝑥)) ∈
ℂ) |
30 | 23, 29 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) ∈ ℂ) |
31 | | elioore 13109 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-π(,)0) → 𝑥 ∈
ℝ) |
32 | 31, 17, 19 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-π(,)0) →
(𝐹‘𝑥) = if((𝑥 mod 𝑇) < π, 1, -1)) |
33 | 1 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) → π
∈ ℝ) |
34 | | sqwvfourb.t |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (2 ·
π) |
35 | | 2rp 12735 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ+ |
36 | | pirp 25618 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ+ |
37 | | rpmulcl 12753 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ+ ∧ π ∈ ℝ+) → (2
· π) ∈ ℝ+) |
38 | 35, 36, 37 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (2
· π) ∈ ℝ+ |
39 | 34, 38 | eqeltri 2835 |
. . . . . . . . . . . . 13
⊢ 𝑇 ∈
ℝ+ |
40 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-π(,)0) → 𝑇 ∈
ℝ+) |
41 | 31, 40 | modcld 13595 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) →
(𝑥 mod 𝑇) ∈ ℝ) |
42 | | picn 25616 |
. . . . . . . . . . . . . . . . . 18
⊢ π
∈ ℂ |
43 | 42 | 2timesi 12111 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· π) = (π + π) |
44 | 34, 43 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (π +
π) |
45 | 44 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢ (-π +
𝑇) = (-π + (π +
π)) |
46 | 2 | recni 10989 |
. . . . . . . . . . . . . . . 16
⊢ -π
∈ ℂ |
47 | 46, 42, 42 | addassi 10985 |
. . . . . . . . . . . . . . 15
⊢ ((-π +
π) + π) = (-π + (π + π)) |
48 | 42 | negidi 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (π +
-π) = 0 |
49 | 42, 46, 48 | addcomli 11167 |
. . . . . . . . . . . . . . . . 17
⊢ (-π +
π) = 0 |
50 | 49 | oveq1i 7285 |
. . . . . . . . . . . . . . . 16
⊢ ((-π +
π) + π) = (0 + π) |
51 | 42 | addid2i 11163 |
. . . . . . . . . . . . . . . 16
⊢ (0 +
π) = π |
52 | 50, 51 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ((-π +
π) + π) = π |
53 | 45, 47, 52 | 3eqtr2ri 2773 |
. . . . . . . . . . . . . 14
⊢ π =
(-π + 𝑇) |
54 | 53 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-π(,)0) → π
= (-π + 𝑇)) |
55 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) → -π
∈ ℝ) |
56 | | 2re 12047 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
57 | 56, 1 | remulcli 10991 |
. . . . . . . . . . . . . . . 16
⊢ (2
· π) ∈ ℝ |
58 | 34, 57 | eqeltri 2835 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 ∈ ℝ |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) → 𝑇 ∈
ℝ) |
60 | 2 | rexri 11033 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ* |
61 | | 0xr 11022 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ* |
62 | | ioogtlb 43033 |
. . . . . . . . . . . . . . 15
⊢ ((-π
∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ (-π(,)0)) →
-π < 𝑥) |
63 | 60, 61, 62 | mp3an12 1450 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) → -π
< 𝑥) |
64 | 55, 31, 59, 63 | ltadd1dd 11586 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-π(,)0) →
(-π + 𝑇) < (𝑥 + 𝑇)) |
65 | 54, 64 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-π(,)0) → π
< (𝑥 + 𝑇)) |
66 | 58 | recni 10989 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 ∈ ℂ |
67 | 66 | mulid2i 10980 |
. . . . . . . . . . . . . . . 16
⊢ (1
· 𝑇) = 𝑇 |
68 | 67 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = (1 · 𝑇) |
69 | 68 | oveq2i 7286 |
. . . . . . . . . . . . . 14
⊢ (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇)) |
70 | 69 | oveq1i 7285 |
. . . . . . . . . . . . 13
⊢ ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇) |
71 | 31, 59 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) →
(𝑥 + 𝑇) ∈ ℝ) |
72 | | 0red 10978 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-π(,)0) → 0
∈ ℝ) |
73 | 8 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-π(,)0) → 0
< π) |
74 | 72, 33, 71, 73, 65 | lttrd 11136 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-π(,)0) → 0
< (𝑥 + 𝑇)) |
75 | 72, 71, 74 | ltled 11123 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) → 0
≤ (𝑥 + 𝑇)) |
76 | | iooltub 43048 |
. . . . . . . . . . . . . . . . 17
⊢ ((-π
∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ (-π(,)0)) →
𝑥 < 0) |
77 | 60, 61, 76 | mp3an12 1450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-π(,)0) → 𝑥 < 0) |
78 | 31, 72, 59, 77 | ltadd1dd 11586 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-π(,)0) →
(𝑥 + 𝑇) < (0 + 𝑇)) |
79 | 59 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-π(,)0) → 𝑇 ∈
ℂ) |
80 | 79 | addid2d 11176 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-π(,)0) → (0 +
𝑇) = 𝑇) |
81 | 78, 80 | breqtrd 5100 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) →
(𝑥 + 𝑇) < 𝑇) |
82 | | modid 13616 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤
(𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇)) |
83 | 71, 40, 75, 81, 82 | syl22anc 836 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-π(,)0) →
((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇)) |
84 | | 1zzd 12351 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-π(,)0) → 1
∈ ℤ) |
85 | | modcyc 13626 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+
∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇)) |
86 | 31, 40, 84, 85 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-π(,)0) →
((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇)) |
87 | 70, 83, 86 | 3eqtr3a 2802 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-π(,)0) →
(𝑥 + 𝑇) = (𝑥 mod 𝑇)) |
88 | 65, 87 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) → π
< (𝑥 mod 𝑇)) |
89 | 33, 41, 88 | ltnsymd 11124 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-π(,)0) → ¬
(𝑥 mod 𝑇) < π) |
90 | 89 | iffalsed 4470 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-π(,)0) →
if((𝑥 mod 𝑇) < π, 1, -1) = -1) |
91 | 32, 90 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑥 ∈ (-π(,)0) →
(𝐹‘𝑥) = -1) |
92 | 91 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → (𝐹‘𝑥) = -1) |
93 | 92 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥)))) |
94 | 93 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 ·
(sin‘(𝑁 ·
𝑥))))) |
95 | | neg1cn 12087 |
. . . . . . 7
⊢ -1 ∈
ℂ |
96 | 95 | a1i 11 |
. . . . . 6
⊢ (𝜑 → -1 ∈
ℂ) |
97 | 24 | nnred 11988 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
98 | 97 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ) |
99 | 31 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → 𝑥 ∈
ℝ) |
100 | 98, 99 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ) |
101 | 100 | resincld 15852 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ) |
102 | | ioossicc 13165 |
. . . . . . . 8
⊢
(-π(,)0) ⊆ (-π[,]0) |
103 | 102 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (-π(,)0) ⊆
(-π[,]0)) |
104 | | ioombl 24729 |
. . . . . . . 8
⊢
(-π(,)0) ∈ dom vol |
105 | 104 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (-π(,)0) ∈ dom
vol) |
106 | 97 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ) |
107 | | iccssre 13161 |
. . . . . . . . . . . 12
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆
ℝ) |
108 | 2, 5, 107 | mp2an 689 |
. . . . . . . . . . 11
⊢
(-π[,]0) ⊆ ℝ |
109 | 108 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-π[,]0) → 𝑥 ∈
ℝ) |
110 | 109 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]0)) → 𝑥 ∈
ℝ) |
111 | 106, 110 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ) |
112 | 111 | resincld 15852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ) |
113 | | 0red 10978 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
114 | | sincn 25603 |
. . . . . . . . . 10
⊢ sin
∈ (ℂ–cn→ℂ) |
115 | 114 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → sin ∈
(ℂ–cn→ℂ)) |
116 | | ax-resscn 10928 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
117 | 108, 116 | sstri 3930 |
. . . . . . . . . . . 12
⊢
(-π[,]0) ⊆ ℂ |
118 | 117 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (-π[,]0) ⊆
ℂ) |
119 | | ssid 3943 |
. . . . . . . . . . . 12
⊢ ℂ
⊆ ℂ |
120 | 119 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℂ ⊆
ℂ) |
121 | 118, 25, 120 | constcncfg 43413 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ)) |
122 | 118, 120 | idcncfg 43414 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈
((-π[,]0)–cn→ℂ)) |
123 | 121, 122 | mulcncf 24610 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ)) |
124 | 115, 123 | cncfmpt1f 24077 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) |
125 | | cniccibl 25005 |
. . . . . . . 8
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
126 | 3, 113, 124, 125 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
127 | 103, 105,
112, 126 | iblss 24969 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
128 | 96, 101, 127 | iblmulc2 24995 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 ·
(sin‘(𝑁 ·
𝑥)))) ∈
𝐿1) |
129 | 94, 128 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) ∈
𝐿1) |
130 | 60 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → -π
∈ ℝ*) |
131 | 1 | rexri 11033 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ* |
132 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → π
∈ ℝ*) |
133 | | elioore 13109 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈
ℝ) |
134 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)π) → -π
∈ ℝ) |
135 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)π) → 0
∈ ℝ) |
136 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)π) → -π
< 0) |
137 | | ioogtlb 43033 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ (0(,)π)) → 0
< 𝑥) |
138 | 61, 131, 137 | mp3an12 1450 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)π) → 0 <
𝑥) |
139 | 134, 135,
133, 136, 138 | lttrd 11136 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → -π
< 𝑥) |
140 | | iooltub 43048 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ (0(,)π)) → 𝑥 < π) |
141 | 61, 131, 140 | mp3an12 1450 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → 𝑥 < π) |
142 | 130, 132,
133, 139, 141 | eliood 43036 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈
(-π(,)π)) |
143 | 142, 20 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝐹‘𝑥) = if((𝑥 mod 𝑇) < π, 1, -1)) |
144 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0(,)π) → 𝑇 ∈
ℝ+) |
145 | 135, 133,
138 | ltled 11123 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0(,)π) → 0 ≤
𝑥) |
146 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0(,)π) → π
∈ ℝ) |
147 | 58 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0(,)π) → 𝑇 ∈
ℝ) |
148 | | 2timesgt 42827 |
. . . . . . . . . . . . . . . . 17
⊢ (π
∈ ℝ+ → π < (2 · π)) |
149 | 36, 148 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ π <
(2 · π) |
150 | 149, 34 | breqtrri 5101 |
. . . . . . . . . . . . . . 15
⊢ π <
𝑇 |
151 | 150 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0(,)π) → π
< 𝑇) |
152 | 133, 146,
147, 141, 151 | lttrd 11136 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇) |
153 | | modid 13616 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+)
∧ (0 ≤ 𝑥 ∧ 𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥) |
154 | 133, 144,
145, 152, 153 | syl22anc 836 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥) |
155 | 154, 141 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π) |
156 | 155 | iftrued 4467 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,)π) →
if((𝑥 mod 𝑇) < π, 1, -1) = 1) |
157 | 156 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1) |
158 | 143, 157 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝐹‘𝑥) = 1) |
159 | 158 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥)))) |
160 | 142, 29 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ) |
161 | 160 | mulid2d 10993 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (1 ·
(sin‘(𝑁 ·
𝑥))) = (sin‘(𝑁 · 𝑥))) |
162 | 159, 161 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥))) |
163 | 162 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥)))) |
164 | | ioossicc 13165 |
. . . . . . 7
⊢
(0(,)π) ⊆ (0[,]π) |
165 | 164 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0(,)π) ⊆
(0[,]π)) |
166 | | ioombl 24729 |
. . . . . . 7
⊢
(0(,)π) ∈ dom vol |
167 | 166 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0(,)π) ∈ dom
vol) |
168 | 97 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ) |
169 | | iccssre 13161 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆
ℝ) |
170 | 5, 1, 169 | mp2an 689 |
. . . . . . . . . 10
⊢
(0[,]π) ⊆ ℝ |
171 | 170 | sseli 3917 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]π) → 𝑥 ∈
ℝ) |
172 | 171 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ) |
173 | 168, 172 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ) |
174 | 173 | resincld 15852 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]π)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ) |
175 | 170, 116 | sstri 3930 |
. . . . . . . . . . 11
⊢
(0[,]π) ⊆ ℂ |
176 | 175 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (0[,]π) ⊆
ℂ) |
177 | 176, 25, 120 | constcncfg 43413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ)) |
178 | 176, 120 | idcncfg 43414 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ)) |
179 | 177, 178 | mulcncf 24610 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ)) |
180 | 115, 179 | cncfmpt1f 24077 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) |
181 | | cniccibl 25005 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
182 | 113, 4, 180, 181 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
183 | 165, 167,
174, 182 | iblss 24969 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))) ∈
𝐿1) |
184 | 163, 183 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) ∈
𝐿1) |
185 | 3, 4, 12, 30, 129, 184 | itgsplitioo 25002 |
. . 3
⊢ (𝜑 → ∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥)) |
186 | 185 | oveq1d 7290 |
. 2
⊢ (𝜑 →
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π)) |
187 | 91 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-π(,)0) →
((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥)))) |
188 | 187 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥)))) |
189 | 60 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) → -π
∈ ℝ*) |
190 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) → π
∈ ℝ*) |
191 | 31, 72, 33, 77, 73 | lttrd 11136 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-π(,)0) → 𝑥 < π) |
192 | 189, 190,
31, 63, 191 | eliood 43036 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-π(,)0) → 𝑥 ∈
(-π(,)π)) |
193 | 192, 29 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ) |
194 | 193 | mulm1d 11427 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → (-1 ·
(sin‘(𝑁 ·
𝑥))) = -(sin‘(𝑁 · 𝑥))) |
195 | 188, 194 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π(,)0)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥))) |
196 | 195 | itgeq2dv 24946 |
. . . . . 6
⊢ (𝜑 → ∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥) |
197 | 101, 127 | itgneg 24968 |
. . . . . 6
⊢ (𝜑 →
-∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥) |
198 | 24 | nnne0d 12023 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ≠ 0) |
199 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ≤
0) |
200 | 25, 198, 3, 113, 199 | itgsincmulx 43515 |
. . . . . . . . 9
⊢ (𝜑 →
∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁)) |
201 | 24 | nnzd 12425 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
202 | | cosknegpi 43410 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ →
(cos‘(𝑁 ·
-π)) = if(2 ∥ 𝑁,
1, -1)) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (cos‘(𝑁 · -π)) = if(2 ∥
𝑁, 1, -1)) |
204 | 25 | mul01d 11174 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 · 0) = 0) |
205 | 204 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (cos‘(𝑁 · 0)) =
(cos‘0)) |
206 | | cos0 15859 |
. . . . . . . . . . . . 13
⊢
(cos‘0) = 1 |
207 | 205, 206 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝜑 → (cos‘(𝑁 · 0)) =
1) |
208 | 203, 207 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝜑 → ((cos‘(𝑁 · -π)) −
(cos‘(𝑁 · 0)))
= (if(2 ∥ 𝑁, 1, -1)
− 1)) |
209 | | 1m1e0 12045 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
210 | | iftrue 4465 |
. . . . . . . . . . . . . 14
⊢ (2
∥ 𝑁 → if(2
∥ 𝑁, 1, -1) =
1) |
211 | 210 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (2
∥ 𝑁 → (if(2
∥ 𝑁, 1, -1) −
1) = (1 − 1)) |
212 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ (2
∥ 𝑁 → if(2
∥ 𝑁, 0, -2) =
0) |
213 | 209, 211,
212 | 3eqtr4a 2804 |
. . . . . . . . . . . 12
⊢ (2
∥ 𝑁 → (if(2
∥ 𝑁, 1, -1) −
1) = if(2 ∥ 𝑁, 0,
-2)) |
214 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬ 2
∥ 𝑁 → if(2
∥ 𝑁, 1, -1) =
-1) |
215 | 214 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (¬ 2
∥ 𝑁 → (if(2
∥ 𝑁, 1, -1) −
1) = (-1 − 1)) |
216 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
217 | | negdi2 11279 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 −
1)) |
218 | 216, 216,
217 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ -(1 + 1)
= (-1 − 1) |
219 | 218 | eqcomi 2747 |
. . . . . . . . . . . . . 14
⊢ (-1
− 1) = -(1 + 1) |
220 | 219 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬ 2
∥ 𝑁 → (-1
− 1) = -(1 + 1)) |
221 | | 1p1e2 12098 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1) =
2 |
222 | 221 | negeqi 11214 |
. . . . . . . . . . . . . 14
⊢ -(1 + 1)
= -2 |
223 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬ 2
∥ 𝑁 → if(2
∥ 𝑁, 0, -2) =
-2) |
224 | 222, 223 | eqtr4id 2797 |
. . . . . . . . . . . . 13
⊢ (¬ 2
∥ 𝑁 → -(1 + 1) =
if(2 ∥ 𝑁, 0,
-2)) |
225 | 215, 220,
224 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (¬ 2
∥ 𝑁 → (if(2
∥ 𝑁, 1, -1) −
1) = if(2 ∥ 𝑁, 0,
-2)) |
226 | 213, 225 | pm2.61i 182 |
. . . . . . . . . . 11
⊢ (if(2
∥ 𝑁, 1, -1) −
1) = if(2 ∥ 𝑁, 0,
-2) |
227 | 208, 226 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝜑 → ((cos‘(𝑁 · -π)) −
(cos‘(𝑁 · 0)))
= if(2 ∥ 𝑁, 0,
-2)) |
228 | 227 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → (((cos‘(𝑁 · -π)) −
(cos‘(𝑁 · 0)))
/ 𝑁) = (if(2 ∥ 𝑁, 0, -2) / 𝑁)) |
229 | 200, 228 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 →
∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, -2) / 𝑁)) |
230 | 229 | negeqd 11215 |
. . . . . . 7
⊢ (𝜑 →
-∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = -(if(2 ∥ 𝑁, 0, -2) / 𝑁)) |
231 | | 0cn 10967 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
232 | | 2cn 12048 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
233 | 232 | negcli 11289 |
. . . . . . . . . 10
⊢ -2 ∈
ℂ |
234 | 231, 233 | ifcli 4506 |
. . . . . . . . 9
⊢ if(2
∥ 𝑁, 0, -2) ∈
ℂ |
235 | 234 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → if(2 ∥ 𝑁, 0, -2) ∈
ℂ) |
236 | 235, 25, 198 | divnegd 11764 |
. . . . . . 7
⊢ (𝜑 → -(if(2 ∥ 𝑁, 0, -2) / 𝑁) = (-if(2 ∥ 𝑁, 0, -2) / 𝑁)) |
237 | | neg0 11267 |
. . . . . . . . . . 11
⊢ -0 =
0 |
238 | 212 | negeqd 11215 |
. . . . . . . . . . 11
⊢ (2
∥ 𝑁 → -if(2
∥ 𝑁, 0, -2) =
-0) |
239 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (2
∥ 𝑁 → if(2
∥ 𝑁, 0, 2) =
0) |
240 | 237, 238,
239 | 3eqtr4a 2804 |
. . . . . . . . . 10
⊢ (2
∥ 𝑁 → -if(2
∥ 𝑁, 0, -2) = if(2
∥ 𝑁, 0,
2)) |
241 | 232 | negnegi 11291 |
. . . . . . . . . . 11
⊢ --2 =
2 |
242 | 223 | negeqd 11215 |
. . . . . . . . . . 11
⊢ (¬ 2
∥ 𝑁 → -if(2
∥ 𝑁, 0, -2) =
--2) |
243 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬ 2
∥ 𝑁 → if(2
∥ 𝑁, 0, 2) =
2) |
244 | 241, 242,
243 | 3eqtr4a 2804 |
. . . . . . . . . 10
⊢ (¬ 2
∥ 𝑁 → -if(2
∥ 𝑁, 0, -2) = if(2
∥ 𝑁, 0,
2)) |
245 | 240, 244 | pm2.61i 182 |
. . . . . . . . 9
⊢ -if(2
∥ 𝑁, 0, -2) = if(2
∥ 𝑁, 0,
2) |
246 | 245 | oveq1i 7285 |
. . . . . . . 8
⊢ (-if(2
∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁) |
247 | 246 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁)) |
248 | 230, 236,
247 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 →
-∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁)) |
249 | 196, 197,
248 | 3eqtr2d 2784 |
. . . . 5
⊢ (𝜑 → ∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁)) |
250 | 133, 17, 19 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0(,)π) → (𝐹‘𝑥) = if((𝑥 mod 𝑇) < π, 1, -1)) |
251 | 250, 156 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,)π) → (𝐹‘𝑥) = 1) |
252 | 251 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,)π) →
((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥)))) |
253 | 252 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥)))) |
254 | 253, 161 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥))) |
255 | 254 | itgeq2dv 24946 |
. . . . . 6
⊢ (𝜑 → ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥) |
256 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≤
π) |
257 | 25, 198, 113, 4, 256 | itgsincmulx 43515 |
. . . . . 6
⊢ (𝜑 →
∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁)) |
258 | | coskpi2 43407 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(cos‘(𝑁 ·
π)) = if(2 ∥ 𝑁, 1,
-1)) |
259 | 201, 258 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (cos‘(𝑁 · π)) = if(2 ∥
𝑁, 1, -1)) |
260 | 207, 259 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → ((cos‘(𝑁 · 0)) −
(cos‘(𝑁 ·
π))) = (1 − if(2 ∥ 𝑁, 1, -1))) |
261 | 210 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (2
∥ 𝑁 → (1 −
if(2 ∥ 𝑁, 1, -1)) =
(1 − 1)) |
262 | 209, 261,
239 | 3eqtr4a 2804 |
. . . . . . . . 9
⊢ (2
∥ 𝑁 → (1 −
if(2 ∥ 𝑁, 1, -1)) =
if(2 ∥ 𝑁, 0,
2)) |
263 | 214 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (¬ 2
∥ 𝑁 → (1 −
if(2 ∥ 𝑁, 1, -1)) =
(1 − -1)) |
264 | 216, 216 | subnegi 11300 |
. . . . . . . . . . 11
⊢ (1
− -1) = (1 + 1) |
265 | 264 | a1i 11 |
. . . . . . . . . 10
⊢ (¬ 2
∥ 𝑁 → (1 −
-1) = (1 + 1)) |
266 | 221, 243 | eqtr4id 2797 |
. . . . . . . . . 10
⊢ (¬ 2
∥ 𝑁 → (1 + 1) =
if(2 ∥ 𝑁, 0,
2)) |
267 | 263, 265,
266 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (¬ 2
∥ 𝑁 → (1 −
if(2 ∥ 𝑁, 1, -1)) =
if(2 ∥ 𝑁, 0,
2)) |
268 | 262, 267 | pm2.61i 182 |
. . . . . . . 8
⊢ (1
− if(2 ∥ 𝑁, 1,
-1)) = if(2 ∥ 𝑁, 0,
2) |
269 | 260, 268 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → ((cos‘(𝑁 · 0)) −
(cos‘(𝑁 ·
π))) = if(2 ∥ 𝑁,
0, 2)) |
270 | 269 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → (((cos‘(𝑁 · 0)) −
(cos‘(𝑁 ·
π))) / 𝑁) = (if(2
∥ 𝑁, 0, 2) / 𝑁)) |
271 | 255, 257,
270 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁)) |
272 | 249, 271 | oveq12d 7293 |
. . . 4
⊢ (𝜑 → (∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁))) |
273 | 231, 232 | ifcli 4506 |
. . . . . 6
⊢ if(2
∥ 𝑁, 0, 2) ∈
ℂ |
274 | 273 | a1i 11 |
. . . . 5
⊢ (𝜑 → if(2 ∥ 𝑁, 0, 2) ∈
ℂ) |
275 | 274, 274,
25, 198 | divdird 11789 |
. . . 4
⊢ (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁))) |
276 | 239, 239 | oveq12d 7293 |
. . . . . . . . 9
⊢ (2
∥ 𝑁 → (if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) = (0 +
0)) |
277 | | 00id 11150 |
. . . . . . . . 9
⊢ (0 + 0) =
0 |
278 | 276, 277 | eqtrdi 2794 |
. . . . . . . 8
⊢ (2
∥ 𝑁 → (if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) =
0) |
279 | 278 | oveq1d 7290 |
. . . . . . 7
⊢ (2
∥ 𝑁 → ((if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁)) |
280 | 279 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁)) |
281 | 25, 198 | div0d 11750 |
. . . . . . 7
⊢ (𝜑 → (0 / 𝑁) = 0) |
282 | 281 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → (0 / 𝑁) = 0) |
283 | | iftrue 4465 |
. . . . . . . 8
⊢ (2
∥ 𝑁 → if(2
∥ 𝑁, 0, (4 / 𝑁)) = 0) |
284 | 283 | eqcomd 2744 |
. . . . . . 7
⊢ (2
∥ 𝑁 → 0 = if(2
∥ 𝑁, 0, (4 / 𝑁))) |
285 | 284 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
286 | 280, 282,
285 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
287 | 243, 243 | oveq12d 7293 |
. . . . . . . . 9
⊢ (¬ 2
∥ 𝑁 → (if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) = (2 +
2)) |
288 | | 2p2e4 12108 |
. . . . . . . . 9
⊢ (2 + 2) =
4 |
289 | 287, 288 | eqtrdi 2794 |
. . . . . . . 8
⊢ (¬ 2
∥ 𝑁 → (if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) =
4) |
290 | 289 | oveq1d 7290 |
. . . . . . 7
⊢ (¬ 2
∥ 𝑁 → ((if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) / 𝑁) = (4 / 𝑁)) |
291 | | iffalse 4468 |
. . . . . . 7
⊢ (¬ 2
∥ 𝑁 → if(2
∥ 𝑁, 0, (4 / 𝑁)) = (4 / 𝑁)) |
292 | 290, 291 | eqtr4d 2781 |
. . . . . 6
⊢ (¬ 2
∥ 𝑁 → ((if(2
∥ 𝑁, 0, 2) + if(2
∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
293 | 292 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
294 | 286, 293 | pm2.61dan 810 |
. . . 4
⊢ (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
295 | 272, 275,
294 | 3eqtr2d 2784 |
. . 3
⊢ (𝜑 → (∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = if(2 ∥ 𝑁, 0, (4 / 𝑁))) |
296 | 295 | oveq1d 7290 |
. 2
⊢ (𝜑 → ((∫(-π(,)0)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π) = (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π)) |
297 | 283 | oveq1d 7290 |
. . . . 5
⊢ (2
∥ 𝑁 → (if(2
∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 /
π)) |
298 | 297 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π)) |
299 | 5, 8 | gtneii 11087 |
. . . . . 6
⊢ π ≠
0 |
300 | 42, 299 | div0i 11709 |
. . . . 5
⊢ (0 /
π) = 0 |
301 | 300 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → (0 / π) = 0) |
302 | | iftrue 4465 |
. . . . . 6
⊢ (2
∥ 𝑁 → if(2
∥ 𝑁, 0, (4 / (𝑁 · π))) =
0) |
303 | 302 | eqcomd 2744 |
. . . . 5
⊢ (2
∥ 𝑁 → 0 = if(2
∥ 𝑁, 0, (4 / (𝑁 ·
π)))) |
304 | 303 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |
305 | 298, 301,
304 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |
306 | 291 | oveq1d 7290 |
. . . . 5
⊢ (¬ 2
∥ 𝑁 → (if(2
∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π)) |
307 | 306 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π)) |
308 | | 4cn 12058 |
. . . . . . 7
⊢ 4 ∈
ℂ |
309 | 308 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 4 ∈
ℂ) |
310 | 42 | a1i 11 |
. . . . . 6
⊢ (𝜑 → π ∈
ℂ) |
311 | 299 | a1i 11 |
. . . . . 6
⊢ (𝜑 → π ≠
0) |
312 | 309, 25, 310, 198, 311 | divdiv1d 11782 |
. . . . 5
⊢ (𝜑 → ((4 / 𝑁) / π) = (4 / (𝑁 · π))) |
313 | 312 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((4 / 𝑁) / π) = (4 / (𝑁 · π))) |
314 | | iffalse 4468 |
. . . . . 6
⊢ (¬ 2
∥ 𝑁 → if(2
∥ 𝑁, 0, (4 / (𝑁 · π))) = (4 / (𝑁 ·
π))) |
315 | 314 | eqcomd 2744 |
. . . . 5
⊢ (¬ 2
∥ 𝑁 → (4 /
(𝑁 · π)) = if(2
∥ 𝑁, 0, (4 / (𝑁 ·
π)))) |
316 | 315 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |
317 | 307, 313,
316 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |
318 | 305, 317 | pm2.61dan 810 |
. 2
⊢ (𝜑 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |
319 | 186, 296,
318 | 3eqtrd 2782 |
1
⊢ (𝜑 →
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) |