Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfourb Structured version   Visualization version   GIF version

Theorem sqwvfourb 42858
Description: Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfourb.t 𝑇 = (2 · π)
sqwvfourb.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfourb.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
sqwvfourb (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfourb
StepHypRef Expression
1 pire 25054 . . . . . 6 π ∈ ℝ
21renegcli 10940 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 10636 . . . . . 6 0 ∈ ℝ
6 negpilt0 41898 . . . . . . 7 -π < 0
72, 5, 6ltleii 10756 . . . . . 6 -π ≤ 0
8 pipos 25056 . . . . . . 7 0 < π
95, 1, 8ltleii 10756 . . . . . 6 0 ≤ π
102, 1elicc2i 12795 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1338 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 elioore 12760 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
1413adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
15 1re 10634 . . . . . . . 8 1 ∈ ℝ
1615renegcli 10940 . . . . . . . 8 -1 ∈ ℝ
1715, 16ifcli 4474 . . . . . . 7 if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ
18 sqwvfourb.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1918fvmpt2 6760 . . . . . . 7 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2014, 17, 19sylancl 589 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
2117a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
2221recnd 10662 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℂ)
2320, 22eqeltrd 2893 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℂ)
24 sqwvfourb.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2524nncnd 11645 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2625adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℂ)
2714recnd 10662 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
2826, 27mulcld 10654 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℂ)
2928sincld 15478 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
3023, 29mulcld 10654 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) ∈ ℂ)
31 elioore 12760 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3231, 17, 19sylancl 589 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfourb.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 12386 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 25057 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 12404 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 691 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2889 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4131, 40modcld 13242 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 25055 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43422timesi 11767 . . . . . . . . . . . . . . . . 17 (2 · π) = (π + π)
4434, 43eqtri 2824 . . . . . . . . . . . . . . . 16 𝑇 = (π + π)
4544oveq2i 7150 . . . . . . . . . . . . . . 15 (-π + 𝑇) = (-π + (π + π))
462recni 10648 . . . . . . . . . . . . . . . 16 -π ∈ ℂ
4746, 42, 42addassi 10644 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (-π + (π + π))
4842negidi 10948 . . . . . . . . . . . . . . . . . 18 (π + -π) = 0
4942, 46, 48addcomli 10825 . . . . . . . . . . . . . . . . 17 (-π + π) = 0
5049oveq1i 7149 . . . . . . . . . . . . . . . 16 ((-π + π) + π) = (0 + π)
5142addid2i 10821 . . . . . . . . . . . . . . . 16 (0 + π) = π
5250, 51eqtri 2824 . . . . . . . . . . . . . . 15 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2831 . . . . . . . . . . . . . 14 π = (-π + 𝑇)
5453a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → π = (-π + 𝑇))
552a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
56 2re 11703 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5756, 1remulcli 10650 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5834, 57eqeltri 2889 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
602rexri 10692 . . . . . . . . . . . . . . 15 -π ∈ ℝ*
61 0xr 10681 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
62 ioogtlb 42119 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6360, 61, 62mp3an12 1448 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6455, 31, 59, 63ltadd1dd 11244 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6554, 64eqbrtrd 5055 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6658recni 10648 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6766mulid2i 10639 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
6867eqcomi 2810 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
6968oveq2i 7150 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7069oveq1i 7149 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7131, 59readdcld 10663 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
72 0red 10637 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
738a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7472, 33, 71, 73, 65lttrd 10794 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7572, 71, 74ltled 10781 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
76 iooltub 42134 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7760, 61, 76mp3an12 1448 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7831, 72, 59, 77ltadd1dd 11244 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
7959recnd 10662 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8079addid2d 10834 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8178, 80breqtrd 5059 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
82 modid 13263 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8371, 40, 75, 81, 82syl22anc 837 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
84 1zzd 12005 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
85 modcyc 13273 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8631, 40, 84, 85syl3anc 1368 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8770, 83, 863eqtr3a 2860 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8865, 87breqtrd 5059 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
8933, 41, 88ltnsymd 10782 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9089iffalsed 4439 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9132, 90eqtrd 2836 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9291adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝐹𝑥) = -1)
9392oveq1d 7154 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
9493mpteq2dva 5128 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))))
95 neg1cn 11743 . . . . . . 7 -1 ∈ ℂ
9695a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9724nnred 11644 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9897adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9931adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 10664 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100resincld 15491 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 12815 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 24172 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10697adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 12811 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 691 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3914 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 10664 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111resincld 15491 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 10637 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 sincn 25042 . . . . . . . . . 10 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → sin ∈ (ℂ–cn→ℂ))
116 ax-resscn 10587 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 3927 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
119 ssid 3940 . . . . . . . . . . . 12 ℂ ⊆ ℂ
120119a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
121118, 25, 120constcncfg 42501 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
122118, 120idcncfg 42502 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
123121, 122mulcncf 24053 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
124115, 123cncfmpt1f 23522 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
125 cniccibl 24447 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
1263, 113, 124, 125syl3anc 1368 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
127103, 105, 112, 126iblss 24411 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
12896, 101, 127iblmulc2 24437 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
12994, 128eqeltrd 2893 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13060a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π ∈ ℝ*)
1311rexri 10692 . . . . . . . . . . . 12 π ∈ ℝ*
132131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
133 elioore 12760 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
1342a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π ∈ ℝ)
135 0red 10637 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
1366a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → -π < 0)
137 ioogtlb 42119 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
13861, 131, 137mp3an12 1448 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
139134, 135, 133, 136, 138lttrd 10794 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → -π < 𝑥)
140 iooltub 42134 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
14161, 131, 140mp3an12 1448 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → 𝑥 < π)
142130, 132, 133, 139, 141eliood 42122 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (-π(,)π))
143142, 20sylan2 595 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
14439a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
145135, 133, 138ltled 10781 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1461a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14758a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
148 2timesgt 41906 . . . . . . . . . . . . . . . . 17 (π ∈ ℝ+ → π < (2 · π))
14936, 148ax-mp 5 . . . . . . . . . . . . . . . 16 π < (2 · π)
150149, 34breqtrri 5060 . . . . . . . . . . . . . . 15 π < 𝑇
151150a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π < 𝑇)
152133, 146, 147, 141, 151lttrd 10794 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
153 modid 13263 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
154133, 144, 145, 152, 153syl22anc 837 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
155154, 141eqbrtrd 5055 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
156155iftrued 4436 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
157156adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
158143, 157eqtrd 2836 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (𝐹𝑥) = 1)
159158oveq1d 7154 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
160142, 29sylan2 595 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
161160mulid2d 10652 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (1 · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
162159, 161eqtrd 2836 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
163162mpteq2dva 5128 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))))
164 ioossicc 12815 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
165164a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ (0[,]π))
166 ioombl 24172 . . . . . . 7 (0(,)π) ∈ dom vol
167166a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
16897adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
169 iccssre 12811 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1705, 1, 169mp2an 691 . . . . . . . . . 10 (0[,]π) ⊆ ℝ
171170sseli 3914 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
172171adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
173168, 172remulcld 10664 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
174173resincld 15491 . . . . . 6 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘(𝑁 · 𝑥)) ∈ ℝ)
175170, 116sstri 3927 . . . . . . . . . . 11 (0[,]π) ⊆ ℂ
176175a1i 11 . . . . . . . . . 10 (𝜑 → (0[,]π) ⊆ ℂ)
177176, 25, 120constcncfg 42501 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
178176, 120idcncfg 42502 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
179177, 178mulcncf 24053 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
180115, 179cncfmpt1f 23522 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
181 cniccibl 24447 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
182113, 4, 180, 181syl3anc 1368 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
183165, 167, 174, 182iblss 24411 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (sin‘(𝑁 · 𝑥))) ∈ 𝐿1)
184163, 183eqeltrd 2893 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 30, 129, 184itgsplitioo 24444 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 7154 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π))
18791oveq1d 7154 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
188187adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (-1 · (sin‘(𝑁 · 𝑥))))
18960a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
190131a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ*)
19131, 72, 33, 77, 73lttrd 10794 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → 𝑥 < π)
192189, 190, 31, 63, 191eliood 42122 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)π))
193192, 29sylan2 595 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π(,)0)) → (sin‘(𝑁 · 𝑥)) ∈ ℂ)
194193mulm1d 11085 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → (-1 · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
195188, 194eqtrd 2836 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = -(sin‘(𝑁 · 𝑥)))
196195itgeq2dv 24388 . . . . . 6 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
197101, 127itgneg 24410 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)-(sin‘(𝑁 · 𝑥)) d𝑥)
19824nnne0d 11679 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
1997a1i 11 . . . . . . . . . 10 (𝜑 → -π ≤ 0)
20025, 198, 3, 113, 199itgsincmulx 42603 . . . . . . . . 9 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁))
20124nnzd 12078 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
202 cosknegpi 42498 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
203201, 202syl 17 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · -π)) = if(2 ∥ 𝑁, 1, -1))
20425mul01d 10832 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 · 0) = 0)
205204fveq2d 6653 . . . . . . . . . . . . 13 (𝜑 → (cos‘(𝑁 · 0)) = (cos‘0))
206 cos0 15498 . . . . . . . . . . . . 13 (cos‘0) = 1
207205, 206eqtrdi 2852 . . . . . . . . . . . 12 (𝜑 → (cos‘(𝑁 · 0)) = 1)
208203, 207oveq12d 7157 . . . . . . . . . . 11 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = (if(2 ∥ 𝑁, 1, -1) − 1))
209 1m1e0 11701 . . . . . . . . . . . . 13 (1 − 1) = 0
210 iftrue 4434 . . . . . . . . . . . . . 14 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = 1)
211210oveq1d 7154 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (1 − 1))
212 iftrue 4434 . . . . . . . . . . . . 13 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = 0)
213209, 211, 2123eqtr4a 2862 . . . . . . . . . . . 12 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
214 iffalse 4437 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 1, -1) = -1)
215214oveq1d 7154 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = (-1 − 1))
216 ax-1cn 10588 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
217 negdi2 10937 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
218216, 216, 217mp2an 691 . . . . . . . . . . . . . . 15 -(1 + 1) = (-1 − 1)
219218eqcomi 2810 . . . . . . . . . . . . . 14 (-1 − 1) = -(1 + 1)
220219a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → (-1 − 1) = -(1 + 1))
221 1p1e2 11754 . . . . . . . . . . . . . . 15 (1 + 1) = 2
222221negeqi 10872 . . . . . . . . . . . . . 14 -(1 + 1) = -2
223 iffalse 4437 . . . . . . . . . . . . . 14 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, -2) = -2)
224222, 223eqtr4id 2855 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑁 → -(1 + 1) = if(2 ∥ 𝑁, 0, -2))
225215, 220, 2243eqtrd 2840 . . . . . . . . . . . 12 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2))
226213, 225pm2.61i 185 . . . . . . . . . . 11 (if(2 ∥ 𝑁, 1, -1) − 1) = if(2 ∥ 𝑁, 0, -2)
227208, 226eqtrdi 2852 . . . . . . . . . 10 (𝜑 → ((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) = if(2 ∥ 𝑁, 0, -2))
228227oveq1d 7154 . . . . . . . . 9 (𝜑 → (((cos‘(𝑁 · -π)) − (cos‘(𝑁 · 0))) / 𝑁) = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
229200, 228eqtrd 2836 . . . . . . . 8 (𝜑 → ∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, -2) / 𝑁))
230229negeqd 10873 . . . . . . 7 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = -(if(2 ∥ 𝑁, 0, -2) / 𝑁))
231 0cn 10626 . . . . . . . . . 10 0 ∈ ℂ
232 2cn 11704 . . . . . . . . . . 11 2 ∈ ℂ
233232negcli 10947 . . . . . . . . . 10 -2 ∈ ℂ
234231, 233ifcli 4474 . . . . . . . . 9 if(2 ∥ 𝑁, 0, -2) ∈ ℂ
235234a1i 11 . . . . . . . 8 (𝜑 → if(2 ∥ 𝑁, 0, -2) ∈ ℂ)
236235, 25, 198divnegd 11422 . . . . . . 7 (𝜑 → -(if(2 ∥ 𝑁, 0, -2) / 𝑁) = (-if(2 ∥ 𝑁, 0, -2) / 𝑁))
237 neg0 10925 . . . . . . . . . . 11 -0 = 0
238212negeqd 10873 . . . . . . . . . . 11 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = -0)
239 iftrue 4434 . . . . . . . . . . 11 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 0)
240237, 238, 2393eqtr4a 2862 . . . . . . . . . 10 (2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
241232negnegi 10949 . . . . . . . . . . 11 --2 = 2
242223negeqd 10873 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = --2)
243 iffalse 4437 . . . . . . . . . . 11 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, 2) = 2)
244241, 242, 2433eqtr4a 2862 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2))
245240, 244pm2.61i 185 . . . . . . . . 9 -if(2 ∥ 𝑁, 0, -2) = if(2 ∥ 𝑁, 0, 2)
246245oveq1i 7149 . . . . . . . 8 (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁)
247246a1i 11 . . . . . . 7 (𝜑 → (-if(2 ∥ 𝑁, 0, -2) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
248230, 236, 2473eqtrd 2840 . . . . . 6 (𝜑 → -∫(-π(,)0)(sin‘(𝑁 · 𝑥)) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
249196, 197, 2483eqtr2d 2842 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
250133, 17, 19sylancl 589 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
251250, 156eqtrd 2836 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
252251oveq1d 7154 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
253252adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (1 · (sin‘(𝑁 · 𝑥))))
254253, 161eqtrd 2836 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) = (sin‘(𝑁 · 𝑥)))
255254itgeq2dv 24388 . . . . . 6 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥)
2569a1i 11 . . . . . . 7 (𝜑 → 0 ≤ π)
25725, 198, 113, 4, 256itgsincmulx 42603 . . . . . 6 (𝜑 → ∫(0(,)π)(sin‘(𝑁 · 𝑥)) d𝑥 = (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁))
258 coskpi2 42495 . . . . . . . . . 10 (𝑁 ∈ ℤ → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
259201, 258syl 17 . . . . . . . . 9 (𝜑 → (cos‘(𝑁 · π)) = if(2 ∥ 𝑁, 1, -1))
260207, 259oveq12d 7157 . . . . . . . 8 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = (1 − if(2 ∥ 𝑁, 1, -1)))
261210oveq2d 7155 . . . . . . . . . 10 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − 1))
262209, 261, 2393eqtr4a 2862 . . . . . . . . 9 (2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
263214oveq2d 7155 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = (1 − -1))
264216, 216subnegi 10958 . . . . . . . . . . 11 (1 − -1) = (1 + 1)
265264a1i 11 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 − -1) = (1 + 1))
266221, 243eqtr4id 2855 . . . . . . . . . 10 (¬ 2 ∥ 𝑁 → (1 + 1) = if(2 ∥ 𝑁, 0, 2))
267263, 265, 2663eqtrd 2840 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2))
268262, 267pm2.61i 185 . . . . . . . 8 (1 − if(2 ∥ 𝑁, 1, -1)) = if(2 ∥ 𝑁, 0, 2)
269260, 268eqtrdi 2852 . . . . . . 7 (𝜑 → ((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) = if(2 ∥ 𝑁, 0, 2))
270269oveq1d 7154 . . . . . 6 (𝜑 → (((cos‘(𝑁 · 0)) − (cos‘(𝑁 · π))) / 𝑁) = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
271255, 257, 2703eqtrd 2840 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 = (if(2 ∥ 𝑁, 0, 2) / 𝑁))
272249, 271oveq12d 7157 . . . 4 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
273231, 232ifcli 4474 . . . . . 6 if(2 ∥ 𝑁, 0, 2) ∈ ℂ
274273a1i 11 . . . . 5 (𝜑 → if(2 ∥ 𝑁, 0, 2) ∈ ℂ)
275274, 274, 25, 198divdird 11447 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = ((if(2 ∥ 𝑁, 0, 2) / 𝑁) + (if(2 ∥ 𝑁, 0, 2) / 𝑁)))
276239, 239oveq12d 7157 . . . . . . . . 9 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (0 + 0))
277 00id 10808 . . . . . . . . 9 (0 + 0) = 0
278276, 277eqtrdi 2852 . . . . . . . 8 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 0)
279278oveq1d 7154 . . . . . . 7 (2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
280279adantl 485 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (0 / 𝑁))
28125, 198div0d 11408 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
282281adantr 484 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / 𝑁) = 0)
283 iftrue 4434 . . . . . . . 8 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = 0)
284283eqcomd 2807 . . . . . . 7 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
285284adantl 485 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
286280, 282, 2853eqtrd 2840 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
287243, 243oveq12d 7157 . . . . . . . . 9 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = (2 + 2))
288 2p2e4 11764 . . . . . . . . 9 (2 + 2) = 4
289287, 288eqtrdi 2852 . . . . . . . 8 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) = 4)
290289oveq1d 7154 . . . . . . 7 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = (4 / 𝑁))
291 iffalse 4437 . . . . . . 7 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / 𝑁)) = (4 / 𝑁))
292290, 291eqtr4d 2839 . . . . . 6 (¬ 2 ∥ 𝑁 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
293292adantl 485 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
294286, 293pm2.61dan 812 . . . 4 (𝜑 → ((if(2 ∥ 𝑁, 0, 2) + if(2 ∥ 𝑁, 0, 2)) / 𝑁) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
295272, 275, 2943eqtr2d 2842 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) = if(2 ∥ 𝑁, 0, (4 / 𝑁)))
296295oveq1d 7154 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥) / π) = (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π))
297283oveq1d 7154 . . . . 5 (2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
298297adantl 485 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = (0 / π))
2995, 8gtneii 10745 . . . . . 6 π ≠ 0
30042, 299div0i 11367 . . . . 5 (0 / π) = 0
301300a1i 11 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → (0 / π) = 0)
302 iftrue 4434 . . . . . 6 (2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = 0)
303302eqcomd 2807 . . . . 5 (2 ∥ 𝑁 → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
304303adantl 485 . . . 4 ((𝜑 ∧ 2 ∥ 𝑁) → 0 = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
305298, 301, 3043eqtrd 2840 . . 3 ((𝜑 ∧ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
306291oveq1d 7154 . . . . 5 (¬ 2 ∥ 𝑁 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
307306adantl 485 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = ((4 / 𝑁) / π))
308 4cn 11714 . . . . . . 7 4 ∈ ℂ
309308a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
31042a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
311299a1i 11 . . . . . 6 (𝜑 → π ≠ 0)
312309, 25, 310, 198, 311divdiv1d 11440 . . . . 5 (𝜑 → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
313312adantr 484 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → ((4 / 𝑁) / π) = (4 / (𝑁 · π)))
314 iffalse 4437 . . . . . 6 (¬ 2 ∥ 𝑁 → if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))) = (4 / (𝑁 · π)))
315314eqcomd 2807 . . . . 5 (¬ 2 ∥ 𝑁 → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
316315adantl 485 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (4 / (𝑁 · π)) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
317307, 313, 3163eqtrd 2840 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑁) → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
318305, 317pm2.61dan 812 . 2 (𝜑 → (if(2 ∥ 𝑁, 0, (4 / 𝑁)) / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
319186, 296, 3183eqtrd 2840 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wss 3884  ifcif 4428   class class class wbr 5033  cmpt 5113  dom cdm 5523  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  *cxr 10667   < clt 10668  cle 10669  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  4c4 11686  cz 11973  +crp 12381  (,)cioo 12730  [,]cicc 12733   mod cmo 13236  sincsin 15412  cosccos 15413  πcpi 15415  cdvds 15602  cnccncf 23484  volcvol 24070  𝐿1cibl 24224  citg 24225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-symdif 4172  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-dvds 15603  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227  df-itg2 24228  df-ibl 24229  df-itg 24230  df-0p 24277  df-limc 24472  df-dv 24473
This theorem is referenced by:  fouriersw  42860
  Copyright terms: Public domain W3C validator