MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   GIF version

Theorem ip0i 28394
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip0i ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 11521 . . . 4 2 ∈ ℂ
2 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
4 ip1i.9 . . . . . . . 8 𝑈 ∈ CPreHilOLD
54phnvi 28385 . . . . . . 7 𝑈 ∈ NrmCVec
6 ip1i.a . . . . . . . 8 𝐴𝑋
7 ip0i.j . . . . . . . . 9 𝐽 ∈ ℂ
8 ip1i.c . . . . . . . . 9 𝐶𝑋
9 ip1i.4 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD𝑈)
102, 9nvscl 28195 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐽 ∈ ℂ ∧ 𝐶𝑋) → (𝐽𝑆𝐶) ∈ 𝑋)
115, 7, 8, 10mp3an 1441 . . . . . . . 8 (𝐽𝑆𝐶) ∈ 𝑋
12 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
132, 12nvgcl 28189 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
145, 6, 11, 13mp3an 1441 . . . . . . 7 (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋
152, 3, 5, 14nvcli 28231 . . . . . 6 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℝ
1615recni 10460 . . . . 5 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℂ
1716sqcli 13365 . . . 4 ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
187negcli 10761 . . . . . . . . 9 -𝐽 ∈ ℂ
192, 9nvscl 28195 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -𝐽 ∈ ℂ ∧ 𝐶𝑋) → (-𝐽𝑆𝐶) ∈ 𝑋)
205, 18, 8, 19mp3an 1441 . . . . . . . 8 (-𝐽𝑆𝐶) ∈ 𝑋
212, 12nvgcl 28189 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
225, 6, 20, 21mp3an 1441 . . . . . . 7 (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
232, 3, 5, 22nvcli 28231 . . . . . 6 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℝ
2423recni 10460 . . . . 5 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℂ
2524sqcli 13365 . . . 4 ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
261, 17, 25subdii 10896 . . 3 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
271, 17mulcli 10453 . . . 4 (2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ
281, 25mulcli 10453 . . . 4 (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ
29 ip1i.b . . . . . . . 8 𝐵𝑋
302, 3, 5, 29nvcli 28231 . . . . . . 7 (𝑁𝐵) ∈ ℝ
3130recni 10460 . . . . . 6 (𝑁𝐵) ∈ ℂ
3231sqcli 13365 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
331, 32mulcli 10453 . . . 4 (2 · ((𝑁𝐵)↑2)) ∈ ℂ
34 pnpcan2 10733 . . . 4 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁𝐵)↑2)) ∈ ℂ) → (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))))
3527, 28, 33, 34mp3an 1441 . . 3 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
3626, 35eqtr4i 2807 . 2 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
37 eqid 2780 . . . . . . . . . 10 (1st𝑈) = (1st𝑈)
3837nvvc 28184 . . . . . . . . 9 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3912vafval 28172 . . . . . . . . . 10 𝐺 = (1st ‘(1st𝑈))
4039vcablo 28138 . . . . . . . . 9 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
415, 38, 40mp2b 10 . . . . . . . 8 𝐺 ∈ AbelOp
426, 29, 113pm3.2i 1320 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
432, 12bafval 28173 . . . . . . . . 9 𝑋 = ran 𝐺
4443ablo32 28118 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4541, 42, 44mp2an 680 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵)
4645fveq2i 6507 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4746oveq1i 6992 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2)
48 neg1cn 11567 . . . . . . . . . 10 -1 ∈ ℂ
492, 9nvscl 28195 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
505, 48, 29, 49mp3an 1441 . . . . . . . . 9 (-1𝑆𝐵) ∈ 𝑋
516, 50, 113pm3.2i 1320 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
5243ablo32 28118 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5341, 51, 52mp2an 680 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
5453fveq2i 6507 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5554oveq1i 6992 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
5647, 55oveq12i 6994 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
572, 12, 9, 3phpar 28393 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
584, 14, 29, 57mp3an 1441 . . . 4 (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
591, 17, 32adddii 10458 . . . 4 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
6056, 58, 593eqtri 2808 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
616, 29, 203pm3.2i 1320 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6243ablo32 28118 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6341, 61, 62mp2an 680 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵)
6463fveq2i 6507 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6564oveq1i 6992 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2)
666, 50, 203pm3.2i 1320 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6743ablo32 28118 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
6841, 66, 67mp2an 680 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
6968fveq2i 6507 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
7069oveq1i 6992 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
7165, 70oveq12i 6994 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
722, 12, 9, 3phpar 28393 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
734, 22, 29, 72mp3an 1441 . . . 4 (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
741, 25, 32adddii 10458 . . . 4 (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7571, 73, 743eqtri 2808 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7660, 75oveq12i 6994 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
772, 12nvgcl 28189 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
785, 6, 29, 77mp3an 1441 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
792, 12nvgcl 28189 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
805, 78, 11, 79mp3an 1441 . . . . . 6 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋
812, 3, 5, 80nvcli 28231 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℝ
8281recni 10460 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℂ
8382sqcli 13365 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
842, 12nvgcl 28189 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
855, 6, 50, 84mp3an 1441 . . . . . . 7 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
862, 12nvgcl 28189 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
875, 85, 11, 86mp3an 1441 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋
882, 3, 5, 87nvcli 28231 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℝ
8988recni 10460 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℂ
9089sqcli 13365 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
912, 12nvgcl 28189 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
925, 78, 20, 91mp3an 1441 . . . . . 6 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
932, 3, 5, 92nvcli 28231 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9493recni 10460 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℂ
9594sqcli 13365 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
962, 12nvgcl 28189 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
975, 85, 20, 96mp3an 1441 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
982, 3, 5, 97nvcli 28231 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9998recni 10460 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℂ
10099sqcli 13365 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
10183, 90, 95, 100addsub4i 10789 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)))
10236, 76, 1013eqtr2ri 2811 1 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1069   = wceq 1508  wcel 2051  cfv 6193  (class class class)co 6982  1st c1st 7505  cc 10339  1c1 10342   + caddc 10344   · cmul 10346  cmin 10676  -cneg 10677  2c2 11501  cexp 13250  AbelOpcablo 28113  CVecOLDcvc 28127  NrmCVeccnv 28153   +𝑣 cpv 28154  BaseSetcba 28155   ·𝑠OLD cns 28156  normCVcnmcv 28159  ·𝑖OLDcdip 28269  CPreHilOLDccphlo 28381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-n0 11714  df-z 11800  df-uz 12065  df-seq 13191  df-exp 13251  df-grpo 28062  df-ablo 28114  df-vc 28128  df-nv 28161  df-va 28164  df-ba 28165  df-sm 28166  df-0v 28167  df-nmcv 28169  df-ph 28382
This theorem is referenced by:  ip1ilem  28395
  Copyright terms: Public domain W3C validator