MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   GIF version

Theorem ip0i 30116
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSetβ€˜π‘ˆ)
ip1i.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
ip1i.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
ip1i.7 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
ip1i.9 π‘ˆ ∈ CPreHilOLD
ip1i.a 𝐴 ∈ 𝑋
ip1i.b 𝐡 ∈ 𝑋
ip1i.c 𝐢 ∈ 𝑋
ip1i.6 𝑁 = (normCVβ€˜π‘ˆ)
ip0i.j 𝐽 ∈ β„‚
Assertion
Ref Expression
ip0i ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2)) + (((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2))) = (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)))

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 12289 . . . 4 2 ∈ β„‚
2 ip1i.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
3 ip1i.6 . . . . . . 7 𝑁 = (normCVβ€˜π‘ˆ)
4 ip1i.9 . . . . . . . 8 π‘ˆ ∈ CPreHilOLD
54phnvi 30107 . . . . . . 7 π‘ˆ ∈ NrmCVec
6 ip1i.a . . . . . . . 8 𝐴 ∈ 𝑋
7 ip0i.j . . . . . . . . 9 𝐽 ∈ β„‚
8 ip1i.c . . . . . . . . 9 𝐢 ∈ 𝑋
9 ip1i.4 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
102, 9nvscl 29917 . . . . . . . . 9 ((π‘ˆ ∈ NrmCVec ∧ 𝐽 ∈ β„‚ ∧ 𝐢 ∈ 𝑋) β†’ (𝐽𝑆𝐢) ∈ 𝑋)
115, 7, 8, 10mp3an 1461 . . . . . . . 8 (𝐽𝑆𝐢) ∈ 𝑋
12 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣 β€˜π‘ˆ)
132, 12nvgcl 29911 . . . . . . . 8 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋) β†’ (𝐴𝐺(𝐽𝑆𝐢)) ∈ 𝑋)
145, 6, 11, 13mp3an 1461 . . . . . . 7 (𝐴𝐺(𝐽𝑆𝐢)) ∈ 𝑋
152, 3, 5, 14nvcli 29953 . . . . . 6 (π‘β€˜(𝐴𝐺(𝐽𝑆𝐢))) ∈ ℝ
1615recni 11230 . . . . 5 (π‘β€˜(𝐴𝐺(𝐽𝑆𝐢))) ∈ β„‚
1716sqcli 14147 . . . 4 ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) ∈ β„‚
187negcli 11530 . . . . . . . . 9 -𝐽 ∈ β„‚
192, 9nvscl 29917 . . . . . . . . 9 ((π‘ˆ ∈ NrmCVec ∧ -𝐽 ∈ β„‚ ∧ 𝐢 ∈ 𝑋) β†’ (-𝐽𝑆𝐢) ∈ 𝑋)
205, 18, 8, 19mp3an 1461 . . . . . . . 8 (-𝐽𝑆𝐢) ∈ 𝑋
212, 12nvgcl 29911 . . . . . . . 8 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋) β†’ (𝐴𝐺(-𝐽𝑆𝐢)) ∈ 𝑋)
225, 6, 20, 21mp3an 1461 . . . . . . 7 (𝐴𝐺(-𝐽𝑆𝐢)) ∈ 𝑋
232, 3, 5, 22nvcli 29953 . . . . . 6 (π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢))) ∈ ℝ
2423recni 11230 . . . . 5 (π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢))) ∈ β„‚
2524sqcli 14147 . . . 4 ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2) ∈ β„‚
261, 17, 25subdii 11665 . . 3 (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2))) = ((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) βˆ’ (2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)))
271, 17mulcli 11223 . . . 4 (2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) ∈ β„‚
281, 25mulcli 11223 . . . 4 (2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) ∈ β„‚
29 ip1i.b . . . . . . . 8 𝐡 ∈ 𝑋
302, 3, 5, 29nvcli 29953 . . . . . . 7 (π‘β€˜π΅) ∈ ℝ
3130recni 11230 . . . . . 6 (π‘β€˜π΅) ∈ β„‚
3231sqcli 14147 . . . . 5 ((π‘β€˜π΅)↑2) ∈ β„‚
331, 32mulcli 11223 . . . 4 (2 Β· ((π‘β€˜π΅)↑2)) ∈ β„‚
34 pnpcan2 11502 . . . 4 (((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) ∈ β„‚ ∧ (2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) ∈ β„‚ ∧ (2 Β· ((π‘β€˜π΅)↑2)) ∈ β„‚) β†’ (((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))) βˆ’ ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))) = ((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) βˆ’ (2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2))))
3527, 28, 33, 34mp3an 1461 . . 3 (((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))) βˆ’ ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))) = ((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) βˆ’ (2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)))
3626, 35eqtr4i 2763 . 2 (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2))) = (((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))) βˆ’ ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))))
37 eqid 2732 . . . . . . . . . 10 (1st β€˜π‘ˆ) = (1st β€˜π‘ˆ)
3837nvvc 29906 . . . . . . . . 9 (π‘ˆ ∈ NrmCVec β†’ (1st β€˜π‘ˆ) ∈ CVecOLD)
3912vafval 29894 . . . . . . . . . 10 𝐺 = (1st β€˜(1st β€˜π‘ˆ))
4039vcablo 29860 . . . . . . . . 9 ((1st β€˜π‘ˆ) ∈ CVecOLD β†’ 𝐺 ∈ AbelOp)
415, 38, 40mp2b 10 . . . . . . . 8 𝐺 ∈ AbelOp
426, 29, 113pm3.2i 1339 . . . . . . . 8 (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋)
432, 12bafval 29895 . . . . . . . . 9 𝑋 = ran 𝐺
4443ablo32 29840 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)) = ((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))
4541, 42, 44mp2an 690 . . . . . . 7 ((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)) = ((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡)
4645fveq2i 6894 . . . . . 6 (π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢))) = (π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))
4746oveq1i 7421 . . . . 5 ((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) = ((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))↑2)
48 neg1cn 12328 . . . . . . . . . 10 -1 ∈ β„‚
492, 9nvscl 29917 . . . . . . . . . 10 ((π‘ˆ ∈ NrmCVec ∧ -1 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (-1𝑆𝐡) ∈ 𝑋)
505, 48, 29, 49mp3an 1461 . . . . . . . . 9 (-1𝑆𝐡) ∈ 𝑋
516, 50, 113pm3.2i 1339 . . . . . . . 8 (𝐴 ∈ 𝑋 ∧ (-1𝑆𝐡) ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋)
5243ablo32 29840 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ (-1𝑆𝐡) ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋)) β†’ ((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)) = ((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))
5341, 51, 52mp2an 690 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)) = ((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡))
5453fveq2i 6894 . . . . . 6 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢))) = (π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))
5554oveq1i 7421 . . . . 5 ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) = ((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)
5647, 55oveq12i 7423 . . . 4 (((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2)) = (((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2))
572, 12, 9, 3phpar 30115 . . . . 5 ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴𝐺(𝐽𝑆𝐢)) ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)) = (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2))))
584, 14, 29, 57mp3an 1461 . . . 4 (((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)) = (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2)))
591, 17, 32adddii 11228 . . . 4 (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2))) = ((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))
6056, 58, 593eqtri 2764 . . 3 (((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2)) = ((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))
616, 29, 203pm3.2i 1339 . . . . . . . 8 (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋)
6243ablo32 29840 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋)) β†’ ((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)) = ((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))
6341, 61, 62mp2an 690 . . . . . . 7 ((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)) = ((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡)
6463fveq2i 6894 . . . . . 6 (π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢))) = (π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))
6564oveq1i 7421 . . . . 5 ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) = ((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))↑2)
666, 50, 203pm3.2i 1339 . . . . . . . 8 (𝐴 ∈ 𝑋 ∧ (-1𝑆𝐡) ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋)
6743ablo32 29840 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ (-1𝑆𝐡) ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋)) β†’ ((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)) = ((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))
6841, 66, 67mp2an 690 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)) = ((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡))
6968fveq2i 6894 . . . . . 6 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢))) = (π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))
7069oveq1i 7421 . . . . 5 ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2) = ((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)
7165, 70oveq12i 7423 . . . 4 (((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2)) = (((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2))
722, 12, 9, 3phpar 30115 . . . . 5 ((π‘ˆ ∈ CPreHilOLD ∧ (𝐴𝐺(-𝐽𝑆𝐢)) ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)) = (2 Β· (((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2))))
734, 22, 29, 72mp3an 1461 . . . 4 (((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺𝐡))↑2) + ((π‘β€˜((𝐴𝐺(-𝐽𝑆𝐢))𝐺(-1𝑆𝐡)))↑2)) = (2 Β· (((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2)))
741, 25, 32adddii 11228 . . . 4 (2 Β· (((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜π΅)↑2))) = ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))
7571, 73, 743eqtri 2764 . . 3 (((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2)) = ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2)))
7660, 75oveq12i 7423 . 2 ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2)) βˆ’ (((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2))) = (((2 Β· ((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))) βˆ’ ((2 Β· ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)) + (2 Β· ((π‘β€˜π΅)↑2))))
772, 12nvgcl 29911 . . . . . . . 8 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐺𝐡) ∈ 𝑋)
785, 6, 29, 77mp3an 1461 . . . . . . 7 (𝐴𝐺𝐡) ∈ 𝑋
792, 12nvgcl 29911 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ (𝐴𝐺𝐡) ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋) β†’ ((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)) ∈ 𝑋)
805, 78, 11, 79mp3an 1461 . . . . . 6 ((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)) ∈ 𝑋
812, 3, 5, 80nvcli 29953 . . . . 5 (π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢))) ∈ ℝ
8281recni 11230 . . . 4 (π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢))) ∈ β„‚
8382sqcli 14147 . . 3 ((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) ∈ β„‚
842, 12nvgcl 29911 . . . . . . . 8 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (-1𝑆𝐡) ∈ 𝑋) β†’ (𝐴𝐺(-1𝑆𝐡)) ∈ 𝑋)
855, 6, 50, 84mp3an 1461 . . . . . . 7 (𝐴𝐺(-1𝑆𝐡)) ∈ 𝑋
862, 12nvgcl 29911 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐡)) ∈ 𝑋 ∧ (𝐽𝑆𝐢) ∈ 𝑋) β†’ ((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)) ∈ 𝑋)
875, 85, 11, 86mp3an 1461 . . . . . 6 ((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)) ∈ 𝑋
882, 3, 5, 87nvcli 29953 . . . . 5 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢))) ∈ ℝ
8988recni 11230 . . . 4 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢))) ∈ β„‚
9089sqcli 14147 . . 3 ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) ∈ β„‚
912, 12nvgcl 29911 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ (𝐴𝐺𝐡) ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋) β†’ ((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)) ∈ 𝑋)
925, 78, 20, 91mp3an 1461 . . . . . 6 ((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)) ∈ 𝑋
932, 3, 5, 92nvcli 29953 . . . . 5 (π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢))) ∈ ℝ
9493recni 11230 . . . 4 (π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢))) ∈ β„‚
9594sqcli 14147 . . 3 ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) ∈ β„‚
962, 12nvgcl 29911 . . . . . . 7 ((π‘ˆ ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐡)) ∈ 𝑋 ∧ (-𝐽𝑆𝐢) ∈ 𝑋) β†’ ((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)) ∈ 𝑋)
975, 85, 20, 96mp3an 1461 . . . . . 6 ((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)) ∈ 𝑋
982, 3, 5, 97nvcli 29953 . . . . 5 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢))) ∈ ℝ
9998recni 11230 . . . 4 (π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢))) ∈ β„‚
10099sqcli 14147 . . 3 ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2) ∈ β„‚
10183, 90, 95, 100addsub4i 11558 . 2 ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2)) βˆ’ (((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2) + ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2))) = ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2)) + (((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2)))
10236, 76, 1013eqtr2ri 2767 1 ((((π‘β€˜((𝐴𝐺𝐡)𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺𝐡)𝐺(-𝐽𝑆𝐢)))↑2)) + (((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜((𝐴𝐺(-1𝑆𝐡))𝐺(-𝐽𝑆𝐢)))↑2))) = (2 Β· (((π‘β€˜(𝐴𝐺(𝐽𝑆𝐢)))↑2) βˆ’ ((π‘β€˜(𝐴𝐺(-𝐽𝑆𝐢)))↑2)))
Colors of variables: wff setvar class
Syntax hints:   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7411  1st c1st 7975  β„‚cc 11110  1c1 11113   + caddc 11115   Β· cmul 11117   βˆ’ cmin 11446  -cneg 11447  2c2 12269  β†‘cexp 14029  AbelOpcablo 29835  CVecOLDcvc 29849  NrmCVeccnv 29875   +𝑣 cpv 29876  BaseSetcba 29877   ·𝑠OLD cns 29878  normCVcnmcv 29881  Β·π‘–OLDcdip 29991  CPreHilOLDccphlo 30103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825  df-seq 13969  df-exp 14030  df-grpo 29784  df-ablo 29836  df-vc 29850  df-nv 29883  df-va 29886  df-ba 29887  df-sm 29888  df-0v 29889  df-nmcv 29891  df-ph 30104
This theorem is referenced by:  ip1ilem  30117
  Copyright terms: Public domain W3C validator