MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   GIF version

Theorem ip0i 29323
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip0i ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 12128 . . . 4 2 ∈ ℂ
2 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
4 ip1i.9 . . . . . . . 8 𝑈 ∈ CPreHilOLD
54phnvi 29314 . . . . . . 7 𝑈 ∈ NrmCVec
6 ip1i.a . . . . . . . 8 𝐴𝑋
7 ip0i.j . . . . . . . . 9 𝐽 ∈ ℂ
8 ip1i.c . . . . . . . . 9 𝐶𝑋
9 ip1i.4 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD𝑈)
102, 9nvscl 29124 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐽 ∈ ℂ ∧ 𝐶𝑋) → (𝐽𝑆𝐶) ∈ 𝑋)
115, 7, 8, 10mp3an 1460 . . . . . . . 8 (𝐽𝑆𝐶) ∈ 𝑋
12 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
132, 12nvgcl 29118 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
145, 6, 11, 13mp3an 1460 . . . . . . 7 (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋
152, 3, 5, 14nvcli 29160 . . . . . 6 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℝ
1615recni 11069 . . . . 5 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℂ
1716sqcli 13978 . . . 4 ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
187negcli 11369 . . . . . . . . 9 -𝐽 ∈ ℂ
192, 9nvscl 29124 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -𝐽 ∈ ℂ ∧ 𝐶𝑋) → (-𝐽𝑆𝐶) ∈ 𝑋)
205, 18, 8, 19mp3an 1460 . . . . . . . 8 (-𝐽𝑆𝐶) ∈ 𝑋
212, 12nvgcl 29118 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
225, 6, 20, 21mp3an 1460 . . . . . . 7 (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
232, 3, 5, 22nvcli 29160 . . . . . 6 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℝ
2423recni 11069 . . . . 5 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℂ
2524sqcli 13978 . . . 4 ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
261, 17, 25subdii 11504 . . 3 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
271, 17mulcli 11062 . . . 4 (2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ
281, 25mulcli 11062 . . . 4 (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ
29 ip1i.b . . . . . . . 8 𝐵𝑋
302, 3, 5, 29nvcli 29160 . . . . . . 7 (𝑁𝐵) ∈ ℝ
3130recni 11069 . . . . . 6 (𝑁𝐵) ∈ ℂ
3231sqcli 13978 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
331, 32mulcli 11062 . . . 4 (2 · ((𝑁𝐵)↑2)) ∈ ℂ
34 pnpcan2 11341 . . . 4 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁𝐵)↑2)) ∈ ℂ) → (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))))
3527, 28, 33, 34mp3an 1460 . . 3 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
3626, 35eqtr4i 2768 . 2 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
37 eqid 2737 . . . . . . . . . 10 (1st𝑈) = (1st𝑈)
3837nvvc 29113 . . . . . . . . 9 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3912vafval 29101 . . . . . . . . . 10 𝐺 = (1st ‘(1st𝑈))
4039vcablo 29067 . . . . . . . . 9 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
415, 38, 40mp2b 10 . . . . . . . 8 𝐺 ∈ AbelOp
426, 29, 113pm3.2i 1338 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
432, 12bafval 29102 . . . . . . . . 9 𝑋 = ran 𝐺
4443ablo32 29047 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4541, 42, 44mp2an 689 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵)
4645fveq2i 6815 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4746oveq1i 7327 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2)
48 neg1cn 12167 . . . . . . . . . 10 -1 ∈ ℂ
492, 9nvscl 29124 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
505, 48, 29, 49mp3an 1460 . . . . . . . . 9 (-1𝑆𝐵) ∈ 𝑋
516, 50, 113pm3.2i 1338 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
5243ablo32 29047 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5341, 51, 52mp2an 689 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
5453fveq2i 6815 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5554oveq1i 7327 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
5647, 55oveq12i 7329 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
572, 12, 9, 3phpar 29322 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
584, 14, 29, 57mp3an 1460 . . . 4 (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
591, 17, 32adddii 11067 . . . 4 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
6056, 58, 593eqtri 2769 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
616, 29, 203pm3.2i 1338 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6243ablo32 29047 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6341, 61, 62mp2an 689 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵)
6463fveq2i 6815 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6564oveq1i 7327 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2)
666, 50, 203pm3.2i 1338 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6743ablo32 29047 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
6841, 66, 67mp2an 689 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
6968fveq2i 6815 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
7069oveq1i 7327 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
7165, 70oveq12i 7329 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
722, 12, 9, 3phpar 29322 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
734, 22, 29, 72mp3an 1460 . . . 4 (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
741, 25, 32adddii 11067 . . . 4 (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7571, 73, 743eqtri 2769 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7660, 75oveq12i 7329 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
772, 12nvgcl 29118 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
785, 6, 29, 77mp3an 1460 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
792, 12nvgcl 29118 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
805, 78, 11, 79mp3an 1460 . . . . . 6 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋
812, 3, 5, 80nvcli 29160 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℝ
8281recni 11069 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℂ
8382sqcli 13978 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
842, 12nvgcl 29118 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
855, 6, 50, 84mp3an 1460 . . . . . . 7 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
862, 12nvgcl 29118 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
875, 85, 11, 86mp3an 1460 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋
882, 3, 5, 87nvcli 29160 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℝ
8988recni 11069 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℂ
9089sqcli 13978 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
912, 12nvgcl 29118 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
925, 78, 20, 91mp3an 1460 . . . . . 6 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
932, 3, 5, 92nvcli 29160 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9493recni 11069 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℂ
9594sqcli 13978 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
962, 12nvgcl 29118 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
975, 85, 20, 96mp3an 1460 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
982, 3, 5, 97nvcli 29160 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9998recni 11069 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℂ
10099sqcli 13978 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
10183, 90, 95, 100addsub4i 11397 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)))
10236, 76, 1013eqtr2ri 2772 1 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2105  cfv 6466  (class class class)co 7317  1st c1st 7876  cc 10949  1c1 10952   + caddc 10954   · cmul 10956  cmin 11285  -cneg 11286  2c2 12108  cexp 13862  AbelOpcablo 29042  CVecOLDcvc 29056  NrmCVeccnv 29082   +𝑣 cpv 29083  BaseSetcba 29084   ·𝑠OLD cns 29085  normCVcnmcv 29088  ·𝑖OLDcdip 29198  CPreHilOLDccphlo 29310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-n0 12314  df-z 12400  df-uz 12663  df-seq 13802  df-exp 13863  df-grpo 28991  df-ablo 29043  df-vc 29057  df-nv 29090  df-va 29093  df-ba 29094  df-sm 29095  df-0v 29096  df-nmcv 29098  df-ph 29311
This theorem is referenced by:  ip1ilem  29324
  Copyright terms: Public domain W3C validator