MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip0i Structured version   Visualization version   GIF version

Theorem ip0i 28612
Description: A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip0i ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))

Proof of Theorem ip0i
StepHypRef Expression
1 2cn 11704 . . . 4 2 ∈ ℂ
2 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
4 ip1i.9 . . . . . . . 8 𝑈 ∈ CPreHilOLD
54phnvi 28603 . . . . . . 7 𝑈 ∈ NrmCVec
6 ip1i.a . . . . . . . 8 𝐴𝑋
7 ip0i.j . . . . . . . . 9 𝐽 ∈ ℂ
8 ip1i.c . . . . . . . . 9 𝐶𝑋
9 ip1i.4 . . . . . . . . . 10 𝑆 = ( ·𝑠OLD𝑈)
102, 9nvscl 28413 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐽 ∈ ℂ ∧ 𝐶𝑋) → (𝐽𝑆𝐶) ∈ 𝑋)
115, 7, 8, 10mp3an 1458 . . . . . . . 8 (𝐽𝑆𝐶) ∈ 𝑋
12 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
132, 12nvgcl 28407 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
145, 6, 11, 13mp3an 1458 . . . . . . 7 (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋
152, 3, 5, 14nvcli 28449 . . . . . 6 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℝ
1615recni 10648 . . . . 5 (𝑁‘(𝐴𝐺(𝐽𝑆𝐶))) ∈ ℂ
1716sqcli 13544 . . . 4 ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
187negcli 10947 . . . . . . . . 9 -𝐽 ∈ ℂ
192, 9nvscl 28413 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -𝐽 ∈ ℂ ∧ 𝐶𝑋) → (-𝐽𝑆𝐶) ∈ 𝑋)
205, 18, 8, 19mp3an 1458 . . . . . . . 8 (-𝐽𝑆𝐶) ∈ 𝑋
212, 12nvgcl 28407 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
225, 6, 20, 21mp3an 1458 . . . . . . 7 (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
232, 3, 5, 22nvcli 28449 . . . . . 6 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℝ
2423recni 10648 . . . . 5 (𝑁‘(𝐴𝐺(-𝐽𝑆𝐶))) ∈ ℂ
2524sqcli 13544 . . . 4 ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
261, 17, 25subdii 11082 . . 3 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
271, 17mulcli 10641 . . . 4 (2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ
281, 25mulcli 10641 . . . 4 (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ
29 ip1i.b . . . . . . . 8 𝐵𝑋
302, 3, 5, 29nvcli 28449 . . . . . . 7 (𝑁𝐵) ∈ ℝ
3130recni 10648 . . . . . 6 (𝑁𝐵) ∈ ℂ
3231sqcli 13544 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
331, 32mulcli 10641 . . . 4 (2 · ((𝑁𝐵)↑2)) ∈ ℂ
34 pnpcan2 10919 . . . 4 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) ∈ ℂ ∧ (2 · ((𝑁𝐵)↑2)) ∈ ℂ) → (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))))
3527, 28, 33, 34mp3an 1458 . . 3 (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) − (2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
3626, 35eqtr4i 2827 . 2 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
37 eqid 2801 . . . . . . . . . 10 (1st𝑈) = (1st𝑈)
3837nvvc 28402 . . . . . . . . 9 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3912vafval 28390 . . . . . . . . . 10 𝐺 = (1st ‘(1st𝑈))
4039vcablo 28356 . . . . . . . . 9 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
415, 38, 40mp2b 10 . . . . . . . 8 𝐺 ∈ AbelOp
426, 29, 113pm3.2i 1336 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
432, 12bafval 28391 . . . . . . . . 9 𝑋 = ran 𝐺
4443ablo32 28336 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4541, 42, 44mp2an 691 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵)
4645fveq2i 6652 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))
4746oveq1i 7149 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2)
48 neg1cn 11743 . . . . . . . . . 10 -1 ∈ ℂ
492, 9nvscl 28413 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
505, 48, 29, 49mp3an 1458 . . . . . . . . 9 (-1𝑆𝐵) ∈ 𝑋
516, 50, 113pm3.2i 1336 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)
5243ablo32 28336 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5341, 51, 52mp2an 691 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) = ((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
5453fveq2i 6652 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
5554oveq1i 7149 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
5647, 55oveq12i 7151 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
572, 12, 9, 3phpar 28611 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
584, 14, 29, 57mp3an 1458 . . . 4 (((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
591, 17, 32adddii 10646 . . . 4 (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
6056, 58, 593eqtri 2828 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
616, 29, 203pm3.2i 1336 . . . . . . . 8 (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6243ablo32 28336 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6341, 61, 62mp2an 691 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵)
6463fveq2i 6652 . . . . . 6 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))
6564oveq1i 7149 . . . . 5 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2)
666, 50, 203pm3.2i 1336 . . . . . . . 8 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)
6743ablo32 28336 . . . . . . . 8 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
6841, 66, 67mp2an 691 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) = ((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵))
6968fveq2i 6652 . . . . . 6 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) = (𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))
7069oveq1i 7149 . . . . 5 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)
7165, 70oveq12i 7151 . . . 4 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2))
722, 12, 9, 3phpar 28611 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝐺(-𝐽𝑆𝐶)) ∈ 𝑋𝐵𝑋) → (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))))
734, 22, 29, 72mp3an 1458 . . . 4 (((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺𝐵))↑2) + ((𝑁‘((𝐴𝐺(-𝐽𝑆𝐶))𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2)))
741, 25, 32adddii 10646 . . . 4 (2 · (((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁𝐵)↑2))) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7571, 73, 743eqtri 2828 . . 3 (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)) = ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2)))
7660, 75oveq12i 7151 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (((2 · ((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))) − ((2 · ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)) + (2 · ((𝑁𝐵)↑2))))
772, 12nvgcl 28407 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
785, 6, 29, 77mp3an 1458 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
792, 12nvgcl 28407 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
805, 78, 11, 79mp3an 1458 . . . . . 6 ((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)) ∈ 𝑋
812, 3, 5, 80nvcli 28449 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℝ
8281recni 10648 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶))) ∈ ℂ
8382sqcli 13544 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
842, 12nvgcl 28407 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
855, 6, 50, 84mp3an 1458 . . . . . . 7 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
862, 12nvgcl 28407 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋)
875, 85, 11, 86mp3an 1458 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)) ∈ 𝑋
882, 3, 5, 87nvcli 28449 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℝ
8988recni 10648 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶))) ∈ ℂ
9089sqcli 13544 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) ∈ ℂ
912, 12nvgcl 28407 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
925, 78, 20, 91mp3an 1458 . . . . . 6 ((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
932, 3, 5, 92nvcli 28449 . . . . 5 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9493recni 10648 . . . 4 (𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶))) ∈ ℂ
9594sqcli 13544 . . 3 ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
962, 12nvgcl 28407 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-𝐽𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋)
975, 85, 20, 96mp3an 1458 . . . . . 6 ((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)) ∈ 𝑋
982, 3, 5, 97nvcli 28449 . . . . 5 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℝ
9998recni 10648 . . . 4 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶))) ∈ ℂ
10099sqcli 13544 . . 3 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2) ∈ ℂ
10183, 90, 95, 100addsub4i 10975 . 2 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2)) − (((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2) + ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2)))
10236, 76, 1013eqtr2ri 2831 1 ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  1st c1st 7673  cc 10528  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  -cneg 10864  2c2 11684  cexp 13429  AbelOpcablo 28331  CVecOLDcvc 28345  NrmCVeccnv 28371   +𝑣 cpv 28372  BaseSetcba 28373   ·𝑠OLD cns 28374  normCVcnmcv 28377  ·𝑖OLDcdip 28487  CPreHilOLDccphlo 28599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-exp 13430  df-grpo 28280  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-nmcv 28387  df-ph 28600
This theorem is referenced by:  ip1ilem  28613
  Copyright terms: Public domain W3C validator