MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Visualization version   GIF version

Theorem log2cnv 26882
Description: Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
Assertion
Ref Expression
log2cnv seq0( + , 𝐹) ⇝ (log‘2)

Proof of Theorem log2cnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12774 . . . 4 0 = (ℤ‘0)
2 0zd 12480 . . . 4 (⊤ → 0 ∈ ℤ)
3 2cn 12200 . . . . . 6 2 ∈ ℂ
4 ax-icn 11065 . . . . . 6 i ∈ ℂ
5 ine0 11552 . . . . . 6 i ≠ 0
63, 4, 5divcli 11863 . . . . 5 (2 / i) ∈ ℂ
76a1i 11 . . . 4 (⊤ → (2 / i) ∈ ℂ)
8 3cn 12206 . . . . . . 7 3 ∈ ℂ
9 3ne0 12231 . . . . . . 7 3 ≠ 0
104, 8, 9divcli 11863 . . . . . 6 (i / 3) ∈ ℂ
11 absdiv 15202 . . . . . . . . 9 ((i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (abs‘(i / 3)) = ((abs‘i) / (abs‘3)))
124, 8, 9, 11mp3an 1463 . . . . . . . 8 (abs‘(i / 3)) = ((abs‘i) / (abs‘3))
13 absi 15193 . . . . . . . . 9 (abs‘i) = 1
14 3re 12205 . . . . . . . . . 10 3 ∈ ℝ
15 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
16 3pos 12230 . . . . . . . . . . 11 0 < 3
1715, 14, 16ltleii 11236 . . . . . . . . . 10 0 ≤ 3
18 absid 15203 . . . . . . . . . 10 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
1914, 17, 18mp2an 692 . . . . . . . . 9 (abs‘3) = 3
2013, 19oveq12i 7358 . . . . . . . 8 ((abs‘i) / (abs‘3)) = (1 / 3)
2112, 20eqtri 2754 . . . . . . 7 (abs‘(i / 3)) = (1 / 3)
22 1lt3 12293 . . . . . . . 8 1 < 3
23 recgt1 12018 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
2414, 16, 23mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
2522, 24mpbi 230 . . . . . . 7 (1 / 3) < 1
2621, 25eqbrtri 5112 . . . . . 6 (abs‘(i / 3)) < 1
27 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2827atantayl3 26877 . . . . . 6 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
2910, 26, 28mp2an 692 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3))
3029a1i 11 . . . 4 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
31 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
32 oveq2 7354 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
3332oveq1d 7361 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
3433oveq2d 7362 . . . . . . . . . 10 (𝑛 = 𝑘 → ((i / 3)↑((2 · 𝑛) + 1)) = ((i / 3)↑((2 · 𝑘) + 1)))
3534, 33oveq12d 7364 . . . . . . . . 9 (𝑛 = 𝑘 → (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) = (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
3631, 35oveq12d 7364 . . . . . . . 8 (𝑛 = 𝑘 → ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
37 ovex 7379 . . . . . . . 8 ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ V
3836, 27, 37fvmpt 6929 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
394a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → i ∈ ℂ)
408a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ∈ ℂ)
419a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ≠ 0)
42 2nn0 12398 . . . . . . . . . . . . . 14 2 ∈ ℕ0
43 nn0mulcl 12417 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
4442, 43mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
45 peano2nn0 12421 . . . . . . . . . . . . 13 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4739, 40, 41, 46expdivd 14067 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) = ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1))))
4847oveq2d 7362 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
49 neg1cn 12110 . . . . . . . . . . . 12 -1 ∈ ℂ
50 expcl 13986 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5149, 50mpan 690 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
52 expcl 13986 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
534, 46, 52sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
54 3nn 12204 . . . . . . . . . . . . 13 3 ∈ ℕ
55 nnexpcl 13981 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5654, 46, 55sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5756nncnd 12141 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℂ)
5856nnne0d 12175 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ≠ 0)
5951, 53, 57, 58divassd 11932 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
60 expp1 13975 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
614, 44, 60sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
62 expmul 14014 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
634, 42, 62mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
64 i2 14109 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
6564oveq1i 7356 . . . . . . . . . . . . . . . 16 ((i↑2)↑𝑘) = (-1↑𝑘)
6663, 65eqtrdi 2782 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = (-1↑𝑘))
6766oveq1d 7361 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((i↑(2 · 𝑘)) · i) = ((-1↑𝑘) · i))
6861, 67eqtrd 2766 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((-1↑𝑘) · i))
6968oveq2d 7362 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7051, 51, 39mulassd 11135 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7149a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
72 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
7371, 72, 72expaddd 14055 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = ((-1↑𝑘) · (-1↑𝑘)))
74 expmul 14014 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
7549, 42, 74mp3an12 1453 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
76 neg1sqe1 14103 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
7776oveq1i 7356 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝑘) = (1↑𝑘)
7875, 77eqtrdi 2782 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (1↑𝑘))
79 nn0cn 12391 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
80792timesd 12364 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 + 𝑘))
8180oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (-1↑(𝑘 + 𝑘)))
82 nn0z 12493 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
83 1exp 13998 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
8482, 83syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
8578, 81, 843eqtr3d 2774 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = 1)
8673, 85eqtr3d 2768 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (-1↑𝑘)) = 1)
8786oveq1d 7361 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = (1 · i))
884mullidi 11117 . . . . . . . . . . . . 13 (1 · i) = i
8987, 88eqtrdi 2782 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = i)
9069, 70, 893eqtr2d 2772 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = i)
9190oveq1d 7361 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9248, 59, 913eqtr2d 2772 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9392oveq1d 7361 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)))
94 expcl 13986 . . . . . . . . . 10 (((i / 3) ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
9510, 46, 94sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
96 nn0p1nn 12420 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9744, 96syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9897nncnd 12141 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
9997nnne0d 12175 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ≠ 0)
10051, 95, 98, 99divassd 11932 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
10139, 57, 98, 58, 99divdiv1d 11928 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10293, 100, 1013eqtr3d 2774 . . . . . . 7 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10357, 98mulcomd 11133 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1)) = (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))))
104103oveq2d 7362 . . . . . . 7 (𝑘 ∈ ℕ0 → (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10538, 102, 1043eqtrd 2770 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10697, 56nnmulcld 12178 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℕ)
107106nncnd 12141 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℂ)
108106nnne0d 12175 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ≠ 0)
10939, 107, 108divcld 11897 . . . . . 6 (𝑘 ∈ ℕ0 → (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))) ∈ ℂ)
110105, 109eqeltrd 2831 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
111110adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
11233oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑘 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑘) + 1)))
113 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑘 → (9↑𝑛) = (9↑𝑘))
114112, 113oveq12d 7364 . . . . . . . 8 (𝑛 = 𝑘 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
115114oveq2d 7362 . . . . . . 7 (𝑛 = 𝑘 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
116 log2cnv.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
117 ovex 7379 . . . . . . 7 (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ V
118115, 116, 117fvmpt 6929 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
119 expp1 13975 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
1208, 44, 119sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
121 expmul 14014 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
1228, 42, 121mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
123 sq3 14105 . . . . . . . . . . . . . . . . 17 (3↑2) = 9
124123oveq1i 7356 . . . . . . . . . . . . . . . 16 ((3↑2)↑𝑘) = (9↑𝑘)
125122, 124eqtrdi 2782 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = (9↑𝑘))
126125oveq1d 7361 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((3↑(2 · 𝑘)) · 3) = ((9↑𝑘) · 3))
127 9nn 12223 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
128 nnexpcl 13981 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (9↑𝑘) ∈ ℕ)
129127, 128mpan 690 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℕ)
130129nncnd 12141 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℂ)
131 mulcom 11092 . . . . . . . . . . . . . . 15 (((9↑𝑘) ∈ ℂ ∧ 3 ∈ ℂ) → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
132130, 8, 131sylancl 586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
133120, 126, 1323eqtrd 2770 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = (3 · (9↑𝑘)))
13490, 133oveq12d 7364 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
13548, 59, 1343eqtr2d 2772 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
136135oveq1d 7361 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)))
137 nnmulcl 12149 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ (9↑𝑘) ∈ ℕ) → (3 · (9↑𝑘)) ∈ ℕ)
13854, 129, 137sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℕ)
139138nncnd 12141 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℂ)
140138nnne0d 12175 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ≠ 0)
14139, 139, 98, 140, 99divdiv1d 11928 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
142136, 100, 1413eqtr3d 2774 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
14340, 130, 98mul32d 11323 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
144143oveq2d 7362 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
14538, 142, 1443eqtrd 2770 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
146145oveq2d 7362 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
147 nnmulcl 12149 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
14854, 97, 147sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
149148, 129nnmulcld 12178 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℕ)
150149nncnd 12141 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℂ)
151149nnne0d 12175 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ≠ 0)
15239, 150, 151divcld 11897 . . . . . . . 8 (𝑘 ∈ ℕ0 → (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ)
153 mulcom 11092 . . . . . . . 8 (((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ ∧ (2 / i) ∈ ℂ) → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
154152, 6, 153sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
1553a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
1565a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → i ≠ 0)
157155, 39, 150, 156, 151dmdcand 11926 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
158146, 154, 1573eqtr2d 2772 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
159118, 158eqtr4d 2769 . . . . 5 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
160159adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
1611, 2, 7, 30, 111, 160isermulc2 15565 . . 3 (⊤ → seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3))))
162161mptru 1548 . 2 seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3)))
163 bndatandm 26867 . . . . . . . 8 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → (i / 3) ∈ dom arctan)
16410, 26, 163mp2an 692 . . . . . . 7 (i / 3) ∈ dom arctan
165 atanval 26822 . . . . . . 7 ((i / 3) ∈ dom arctan → (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))))
166164, 165ax-mp 5 . . . . . 6 (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))))
167 df-4 12190 . . . . . . . . . . . . 13 4 = (3 + 1)
168167oveq1i 7356 . . . . . . . . . . . 12 (4 / 3) = ((3 + 1) / 3)
169 ax-1cn 11064 . . . . . . . . . . . . 13 1 ∈ ℂ
1708, 169, 8, 9divdiri 11878 . . . . . . . . . . . 12 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
1718, 9dividi 11854 . . . . . . . . . . . . 13 (3 / 3) = 1
172171oveq1i 7356 . . . . . . . . . . . 12 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
173168, 170, 1723eqtri 2758 . . . . . . . . . . 11 (4 / 3) = (1 + (1 / 3))
174169, 8, 9divcli 11863 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
175169, 174subnegi 11440 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 + (1 / 3))
176 divneg 11813 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(1 / 3) = (-1 / 3))
177169, 8, 9, 176mp3an 1463 . . . . . . . . . . . . 13 -(1 / 3) = (-1 / 3)
178 ixi 11746 . . . . . . . . . . . . . 14 (i · i) = -1
179178oveq1i 7356 . . . . . . . . . . . . 13 ((i · i) / 3) = (-1 / 3)
1804, 4, 8, 9divassi 11877 . . . . . . . . . . . . 13 ((i · i) / 3) = (i · (i / 3))
181177, 179, 1803eqtr2i 2760 . . . . . . . . . . . 12 -(1 / 3) = (i · (i / 3))
182181oveq2i 7357 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 − (i · (i / 3)))
183173, 175, 1823eqtr2ri 2761 . . . . . . . . . 10 (1 − (i · (i / 3))) = (4 / 3)
184183fveq2i 6825 . . . . . . . . 9 (log‘(1 − (i · (i / 3)))) = (log‘(4 / 3))
1858, 9pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
186 divsubdir 11815 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
1878, 169, 185, 186mp3an 1463 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
188 3m1e2 12248 . . . . . . . . . . . . 13 (3 − 1) = 2
189188oveq1i 7356 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
190171oveq1i 7356 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
191187, 189, 1903eqtr3i 2762 . . . . . . . . . . 11 (2 / 3) = (1 − (1 / 3))
192169, 174negsubi 11439 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 − (1 / 3))
193181oveq2i 7357 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 + (i · (i / 3)))
194191, 192, 1933eqtr2ri 2761 . . . . . . . . . 10 (1 + (i · (i / 3))) = (2 / 3)
195194fveq2i 6825 . . . . . . . . 9 (log‘(1 + (i · (i / 3)))) = (log‘(2 / 3))
196184, 195oveq12i 7358 . . . . . . . 8 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
197 4re 12209 . . . . . . . . . . 11 4 ∈ ℝ
198 4pos 12232 . . . . . . . . . . 11 0 < 4
199197, 198elrpii 12893 . . . . . . . . . 10 4 ∈ ℝ+
200 3rp 12896 . . . . . . . . . 10 3 ∈ ℝ+
201 rpdivcl 12917 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (4 / 3) ∈ ℝ+)
202199, 200, 201mp2an 692 . . . . . . . . 9 (4 / 3) ∈ ℝ+
203 2rp 12895 . . . . . . . . . 10 2 ∈ ℝ+
204 rpdivcl 12917 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (2 / 3) ∈ ℝ+)
205203, 200, 204mp2an 692 . . . . . . . . 9 (2 / 3) ∈ ℝ+
206 relogdiv 26530 . . . . . . . . 9 (((4 / 3) ∈ ℝ+ ∧ (2 / 3) ∈ ℝ+) → (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3))))
207202, 205, 206mp2an 692 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
208 4cn 12210 . . . . . . . . . . 11 4 ∈ ℂ
209 2cnne0 12330 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
210 divcan7 11830 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((4 / 3) / (2 / 3)) = (4 / 2))
211208, 209, 185, 210mp3an 1463 . . . . . . . . . 10 ((4 / 3) / (2 / 3)) = (4 / 2)
212 4d2e2 12290 . . . . . . . . . 10 (4 / 2) = 2
213211, 212eqtri 2754 . . . . . . . . 9 ((4 / 3) / (2 / 3)) = 2
214213fveq2i 6825 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = (log‘2)
215196, 207, 2143eqtr2i 2760 . . . . . . 7 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = (log‘2)
216215oveq2i 7357 . . . . . 6 ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))) = ((i / 2) · (log‘2))
217166, 216eqtri 2754 . . . . 5 (arctan‘(i / 3)) = ((i / 2) · (log‘2))
218217oveq2i 7357 . . . 4 ((2 / i) · (arctan‘(i / 3))) = ((2 / i) · ((i / 2) · (log‘2)))
219 2ne0 12229 . . . . . 6 2 ≠ 0
2204, 3, 219divcli 11863 . . . . 5 (i / 2) ∈ ℂ
221 logcl 26505 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (log‘2) ∈ ℂ)
2223, 219, 221mp2an 692 . . . . 5 (log‘2) ∈ ℂ
2236, 220, 222mulassi 11123 . . . 4 (((2 / i) · (i / 2)) · (log‘2)) = ((2 / i) · ((i / 2) · (log‘2)))
224218, 223eqtr4i 2757 . . 3 ((2 / i) · (arctan‘(i / 3))) = (((2 / i) · (i / 2)) · (log‘2))
225 divcan6 11828 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((2 / i) · (i / 2)) = 1)
2263, 219, 4, 5, 225mp4an 693 . . . 4 ((2 / i) · (i / 2)) = 1
227226oveq1i 7356 . . 3 (((2 / i) · (i / 2)) · (log‘2)) = (1 · (log‘2))
228222mullidi 11117 . . 3 (1 · (log‘2)) = (log‘2)
229224, 227, 2283eqtri 2758 . 2 ((2 / i) · (arctan‘(i / 3))) = (log‘2)
230162, 229breqtri 5116 1 seq0( + , 𝐹) ⇝ (log‘2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  9c9 12187  0cn0 12381  cz 12468  +crp 12890  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391  logclog 26491  arctancatan 26802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-ulm 26314  df-log 26493  df-atan 26805
This theorem is referenced by:  log2tlbnd  26883
  Copyright terms: Public domain W3C validator