MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Visualization version   GIF version

Theorem log2cnv 26861
Description: Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
Assertion
Ref Expression
log2cnv seq0( + , 𝐹) ⇝ (log‘2)

Proof of Theorem log2cnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12842 . . . 4 0 = (ℤ‘0)
2 0zd 12548 . . . 4 (⊤ → 0 ∈ ℤ)
3 2cn 12268 . . . . . 6 2 ∈ ℂ
4 ax-icn 11134 . . . . . 6 i ∈ ℂ
5 ine0 11620 . . . . . 6 i ≠ 0
63, 4, 5divcli 11931 . . . . 5 (2 / i) ∈ ℂ
76a1i 11 . . . 4 (⊤ → (2 / i) ∈ ℂ)
8 3cn 12274 . . . . . . 7 3 ∈ ℂ
9 3ne0 12299 . . . . . . 7 3 ≠ 0
104, 8, 9divcli 11931 . . . . . 6 (i / 3) ∈ ℂ
11 absdiv 15268 . . . . . . . . 9 ((i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (abs‘(i / 3)) = ((abs‘i) / (abs‘3)))
124, 8, 9, 11mp3an 1463 . . . . . . . 8 (abs‘(i / 3)) = ((abs‘i) / (abs‘3))
13 absi 15259 . . . . . . . . 9 (abs‘i) = 1
14 3re 12273 . . . . . . . . . 10 3 ∈ ℝ
15 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
16 3pos 12298 . . . . . . . . . . 11 0 < 3
1715, 14, 16ltleii 11304 . . . . . . . . . 10 0 ≤ 3
18 absid 15269 . . . . . . . . . 10 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
1914, 17, 18mp2an 692 . . . . . . . . 9 (abs‘3) = 3
2013, 19oveq12i 7402 . . . . . . . 8 ((abs‘i) / (abs‘3)) = (1 / 3)
2112, 20eqtri 2753 . . . . . . 7 (abs‘(i / 3)) = (1 / 3)
22 1lt3 12361 . . . . . . . 8 1 < 3
23 recgt1 12086 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
2414, 16, 23mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
2522, 24mpbi 230 . . . . . . 7 (1 / 3) < 1
2621, 25eqbrtri 5131 . . . . . 6 (abs‘(i / 3)) < 1
27 eqid 2730 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2827atantayl3 26856 . . . . . 6 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
2910, 26, 28mp2an 692 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3))
3029a1i 11 . . . 4 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
31 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
32 oveq2 7398 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
3332oveq1d 7405 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
3433oveq2d 7406 . . . . . . . . . 10 (𝑛 = 𝑘 → ((i / 3)↑((2 · 𝑛) + 1)) = ((i / 3)↑((2 · 𝑘) + 1)))
3534, 33oveq12d 7408 . . . . . . . . 9 (𝑛 = 𝑘 → (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) = (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
3631, 35oveq12d 7408 . . . . . . . 8 (𝑛 = 𝑘 → ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
37 ovex 7423 . . . . . . . 8 ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ V
3836, 27, 37fvmpt 6971 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
394a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → i ∈ ℂ)
408a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ∈ ℂ)
419a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ≠ 0)
42 2nn0 12466 . . . . . . . . . . . . . 14 2 ∈ ℕ0
43 nn0mulcl 12485 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
4442, 43mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
45 peano2nn0 12489 . . . . . . . . . . . . 13 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4739, 40, 41, 46expdivd 14132 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) = ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1))))
4847oveq2d 7406 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
49 neg1cn 12178 . . . . . . . . . . . 12 -1 ∈ ℂ
50 expcl 14051 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5149, 50mpan 690 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
52 expcl 14051 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
534, 46, 52sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
54 3nn 12272 . . . . . . . . . . . . 13 3 ∈ ℕ
55 nnexpcl 14046 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5654, 46, 55sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5756nncnd 12209 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℂ)
5856nnne0d 12243 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ≠ 0)
5951, 53, 57, 58divassd 12000 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
60 expp1 14040 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
614, 44, 60sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
62 expmul 14079 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
634, 42, 62mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
64 i2 14174 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
6564oveq1i 7400 . . . . . . . . . . . . . . . 16 ((i↑2)↑𝑘) = (-1↑𝑘)
6663, 65eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = (-1↑𝑘))
6766oveq1d 7405 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((i↑(2 · 𝑘)) · i) = ((-1↑𝑘) · i))
6861, 67eqtrd 2765 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((-1↑𝑘) · i))
6968oveq2d 7406 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7051, 51, 39mulassd 11204 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7149a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
72 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
7371, 72, 72expaddd 14120 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = ((-1↑𝑘) · (-1↑𝑘)))
74 expmul 14079 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
7549, 42, 74mp3an12 1453 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
76 neg1sqe1 14168 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
7776oveq1i 7400 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝑘) = (1↑𝑘)
7875, 77eqtrdi 2781 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (1↑𝑘))
79 nn0cn 12459 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
80792timesd 12432 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 + 𝑘))
8180oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (-1↑(𝑘 + 𝑘)))
82 nn0z 12561 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
83 1exp 14063 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
8482, 83syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
8578, 81, 843eqtr3d 2773 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = 1)
8673, 85eqtr3d 2767 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (-1↑𝑘)) = 1)
8786oveq1d 7405 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = (1 · i))
884mullidi 11186 . . . . . . . . . . . . 13 (1 · i) = i
8987, 88eqtrdi 2781 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = i)
9069, 70, 893eqtr2d 2771 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = i)
9190oveq1d 7405 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9248, 59, 913eqtr2d 2771 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9392oveq1d 7405 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)))
94 expcl 14051 . . . . . . . . . 10 (((i / 3) ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
9510, 46, 94sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
96 nn0p1nn 12488 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9744, 96syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9897nncnd 12209 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
9997nnne0d 12243 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ≠ 0)
10051, 95, 98, 99divassd 12000 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
10139, 57, 98, 58, 99divdiv1d 11996 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10293, 100, 1013eqtr3d 2773 . . . . . . 7 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10357, 98mulcomd 11202 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1)) = (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))))
104103oveq2d 7406 . . . . . . 7 (𝑘 ∈ ℕ0 → (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10538, 102, 1043eqtrd 2769 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10697, 56nnmulcld 12246 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℕ)
107106nncnd 12209 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℂ)
108106nnne0d 12243 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ≠ 0)
10939, 107, 108divcld 11965 . . . . . 6 (𝑘 ∈ ℕ0 → (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))) ∈ ℂ)
110105, 109eqeltrd 2829 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
111110adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
11233oveq2d 7406 . . . . . . . . 9 (𝑛 = 𝑘 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑘) + 1)))
113 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑘 → (9↑𝑛) = (9↑𝑘))
114112, 113oveq12d 7408 . . . . . . . 8 (𝑛 = 𝑘 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
115114oveq2d 7406 . . . . . . 7 (𝑛 = 𝑘 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
116 log2cnv.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
117 ovex 7423 . . . . . . 7 (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ V
118115, 116, 117fvmpt 6971 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
119 expp1 14040 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
1208, 44, 119sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
121 expmul 14079 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
1228, 42, 121mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
123 sq3 14170 . . . . . . . . . . . . . . . . 17 (3↑2) = 9
124123oveq1i 7400 . . . . . . . . . . . . . . . 16 ((3↑2)↑𝑘) = (9↑𝑘)
125122, 124eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = (9↑𝑘))
126125oveq1d 7405 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((3↑(2 · 𝑘)) · 3) = ((9↑𝑘) · 3))
127 9nn 12291 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
128 nnexpcl 14046 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (9↑𝑘) ∈ ℕ)
129127, 128mpan 690 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℕ)
130129nncnd 12209 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℂ)
131 mulcom 11161 . . . . . . . . . . . . . . 15 (((9↑𝑘) ∈ ℂ ∧ 3 ∈ ℂ) → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
132130, 8, 131sylancl 586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
133120, 126, 1323eqtrd 2769 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = (3 · (9↑𝑘)))
13490, 133oveq12d 7408 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
13548, 59, 1343eqtr2d 2771 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
136135oveq1d 7405 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)))
137 nnmulcl 12217 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ (9↑𝑘) ∈ ℕ) → (3 · (9↑𝑘)) ∈ ℕ)
13854, 129, 137sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℕ)
139138nncnd 12209 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℂ)
140138nnne0d 12243 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ≠ 0)
14139, 139, 98, 140, 99divdiv1d 11996 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
142136, 100, 1413eqtr3d 2773 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
14340, 130, 98mul32d 11391 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
144143oveq2d 7406 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
14538, 142, 1443eqtrd 2769 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
146145oveq2d 7406 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
147 nnmulcl 12217 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
14854, 97, 147sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
149148, 129nnmulcld 12246 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℕ)
150149nncnd 12209 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℂ)
151149nnne0d 12243 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ≠ 0)
15239, 150, 151divcld 11965 . . . . . . . 8 (𝑘 ∈ ℕ0 → (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ)
153 mulcom 11161 . . . . . . . 8 (((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ ∧ (2 / i) ∈ ℂ) → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
154152, 6, 153sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
1553a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
1565a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → i ≠ 0)
157155, 39, 150, 156, 151dmdcand 11994 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
158146, 154, 1573eqtr2d 2771 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
159118, 158eqtr4d 2768 . . . . 5 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
160159adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
1611, 2, 7, 30, 111, 160isermulc2 15631 . . 3 (⊤ → seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3))))
162161mptru 1547 . 2 seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3)))
163 bndatandm 26846 . . . . . . . 8 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → (i / 3) ∈ dom arctan)
16410, 26, 163mp2an 692 . . . . . . 7 (i / 3) ∈ dom arctan
165 atanval 26801 . . . . . . 7 ((i / 3) ∈ dom arctan → (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))))
166164, 165ax-mp 5 . . . . . 6 (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))))
167 df-4 12258 . . . . . . . . . . . . 13 4 = (3 + 1)
168167oveq1i 7400 . . . . . . . . . . . 12 (4 / 3) = ((3 + 1) / 3)
169 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
1708, 169, 8, 9divdiri 11946 . . . . . . . . . . . 12 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
1718, 9dividi 11922 . . . . . . . . . . . . 13 (3 / 3) = 1
172171oveq1i 7400 . . . . . . . . . . . 12 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
173168, 170, 1723eqtri 2757 . . . . . . . . . . 11 (4 / 3) = (1 + (1 / 3))
174169, 8, 9divcli 11931 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
175169, 174subnegi 11508 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 + (1 / 3))
176 divneg 11881 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(1 / 3) = (-1 / 3))
177169, 8, 9, 176mp3an 1463 . . . . . . . . . . . . 13 -(1 / 3) = (-1 / 3)
178 ixi 11814 . . . . . . . . . . . . . 14 (i · i) = -1
179178oveq1i 7400 . . . . . . . . . . . . 13 ((i · i) / 3) = (-1 / 3)
1804, 4, 8, 9divassi 11945 . . . . . . . . . . . . 13 ((i · i) / 3) = (i · (i / 3))
181177, 179, 1803eqtr2i 2759 . . . . . . . . . . . 12 -(1 / 3) = (i · (i / 3))
182181oveq2i 7401 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 − (i · (i / 3)))
183173, 175, 1823eqtr2ri 2760 . . . . . . . . . 10 (1 − (i · (i / 3))) = (4 / 3)
184183fveq2i 6864 . . . . . . . . 9 (log‘(1 − (i · (i / 3)))) = (log‘(4 / 3))
1858, 9pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
186 divsubdir 11883 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
1878, 169, 185, 186mp3an 1463 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
188 3m1e2 12316 . . . . . . . . . . . . 13 (3 − 1) = 2
189188oveq1i 7400 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
190171oveq1i 7400 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
191187, 189, 1903eqtr3i 2761 . . . . . . . . . . 11 (2 / 3) = (1 − (1 / 3))
192169, 174negsubi 11507 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 − (1 / 3))
193181oveq2i 7401 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 + (i · (i / 3)))
194191, 192, 1933eqtr2ri 2760 . . . . . . . . . 10 (1 + (i · (i / 3))) = (2 / 3)
195194fveq2i 6864 . . . . . . . . 9 (log‘(1 + (i · (i / 3)))) = (log‘(2 / 3))
196184, 195oveq12i 7402 . . . . . . . 8 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
197 4re 12277 . . . . . . . . . . 11 4 ∈ ℝ
198 4pos 12300 . . . . . . . . . . 11 0 < 4
199197, 198elrpii 12961 . . . . . . . . . 10 4 ∈ ℝ+
200 3rp 12964 . . . . . . . . . 10 3 ∈ ℝ+
201 rpdivcl 12985 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (4 / 3) ∈ ℝ+)
202199, 200, 201mp2an 692 . . . . . . . . 9 (4 / 3) ∈ ℝ+
203 2rp 12963 . . . . . . . . . 10 2 ∈ ℝ+
204 rpdivcl 12985 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (2 / 3) ∈ ℝ+)
205203, 200, 204mp2an 692 . . . . . . . . 9 (2 / 3) ∈ ℝ+
206 relogdiv 26509 . . . . . . . . 9 (((4 / 3) ∈ ℝ+ ∧ (2 / 3) ∈ ℝ+) → (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3))))
207202, 205, 206mp2an 692 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
208 4cn 12278 . . . . . . . . . . 11 4 ∈ ℂ
209 2cnne0 12398 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
210 divcan7 11898 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((4 / 3) / (2 / 3)) = (4 / 2))
211208, 209, 185, 210mp3an 1463 . . . . . . . . . 10 ((4 / 3) / (2 / 3)) = (4 / 2)
212 4d2e2 12358 . . . . . . . . . 10 (4 / 2) = 2
213211, 212eqtri 2753 . . . . . . . . 9 ((4 / 3) / (2 / 3)) = 2
214213fveq2i 6864 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = (log‘2)
215196, 207, 2143eqtr2i 2759 . . . . . . 7 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = (log‘2)
216215oveq2i 7401 . . . . . 6 ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))) = ((i / 2) · (log‘2))
217166, 216eqtri 2753 . . . . 5 (arctan‘(i / 3)) = ((i / 2) · (log‘2))
218217oveq2i 7401 . . . 4 ((2 / i) · (arctan‘(i / 3))) = ((2 / i) · ((i / 2) · (log‘2)))
219 2ne0 12297 . . . . . 6 2 ≠ 0
2204, 3, 219divcli 11931 . . . . 5 (i / 2) ∈ ℂ
221 logcl 26484 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (log‘2) ∈ ℂ)
2223, 219, 221mp2an 692 . . . . 5 (log‘2) ∈ ℂ
2236, 220, 222mulassi 11192 . . . 4 (((2 / i) · (i / 2)) · (log‘2)) = ((2 / i) · ((i / 2) · (log‘2)))
224218, 223eqtr4i 2756 . . 3 ((2 / i) · (arctan‘(i / 3))) = (((2 / i) · (i / 2)) · (log‘2))
225 divcan6 11896 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((2 / i) · (i / 2)) = 1)
2263, 219, 4, 5, 225mp4an 693 . . . 4 ((2 / i) · (i / 2)) = 1
227226oveq1i 7400 . . 3 (((2 / i) · (i / 2)) · (log‘2)) = (1 · (log‘2))
228222mullidi 11186 . . 3 (1 · (log‘2)) = (log‘2)
229224, 227, 2283eqtri 2757 . 2 ((2 / i) · (arctan‘(i / 3))) = (log‘2)
230162, 229breqtri 5135 1 seq0( + , 𝐹) ⇝ (log‘2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  9c9 12255  0cn0 12449  cz 12536  +crp 12958  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  logclog 26470  arctancatan 26781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-log 26472  df-atan 26784
This theorem is referenced by:  log2tlbnd  26862
  Copyright terms: Public domain W3C validator