MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Visualization version   GIF version

Theorem log2cnv 26987
Description: Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
Assertion
Ref Expression
log2cnv seq0( + , 𝐹) ⇝ (log‘2)

Proof of Theorem log2cnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12920 . . . 4 0 = (ℤ‘0)
2 0zd 12625 . . . 4 (⊤ → 0 ∈ ℤ)
3 2cn 12341 . . . . . 6 2 ∈ ℂ
4 ax-icn 11214 . . . . . 6 i ∈ ℂ
5 ine0 11698 . . . . . 6 i ≠ 0
63, 4, 5divcli 12009 . . . . 5 (2 / i) ∈ ℂ
76a1i 11 . . . 4 (⊤ → (2 / i) ∈ ℂ)
8 3cn 12347 . . . . . . 7 3 ∈ ℂ
9 3ne0 12372 . . . . . . 7 3 ≠ 0
104, 8, 9divcli 12009 . . . . . 6 (i / 3) ∈ ℂ
11 absdiv 15334 . . . . . . . . 9 ((i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (abs‘(i / 3)) = ((abs‘i) / (abs‘3)))
124, 8, 9, 11mp3an 1463 . . . . . . . 8 (abs‘(i / 3)) = ((abs‘i) / (abs‘3))
13 absi 15325 . . . . . . . . 9 (abs‘i) = 1
14 3re 12346 . . . . . . . . . 10 3 ∈ ℝ
15 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
16 3pos 12371 . . . . . . . . . . 11 0 < 3
1715, 14, 16ltleii 11384 . . . . . . . . . 10 0 ≤ 3
18 absid 15335 . . . . . . . . . 10 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
1914, 17, 18mp2an 692 . . . . . . . . 9 (abs‘3) = 3
2013, 19oveq12i 7443 . . . . . . . 8 ((abs‘i) / (abs‘3)) = (1 / 3)
2112, 20eqtri 2765 . . . . . . 7 (abs‘(i / 3)) = (1 / 3)
22 1lt3 12439 . . . . . . . 8 1 < 3
23 recgt1 12164 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
2414, 16, 23mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
2522, 24mpbi 230 . . . . . . 7 (1 / 3) < 1
2621, 25eqbrtri 5164 . . . . . 6 (abs‘(i / 3)) < 1
27 eqid 2737 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2827atantayl3 26982 . . . . . 6 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
2910, 26, 28mp2an 692 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3))
3029a1i 11 . . . 4 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
31 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
32 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
3332oveq1d 7446 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
3433oveq2d 7447 . . . . . . . . . 10 (𝑛 = 𝑘 → ((i / 3)↑((2 · 𝑛) + 1)) = ((i / 3)↑((2 · 𝑘) + 1)))
3534, 33oveq12d 7449 . . . . . . . . 9 (𝑛 = 𝑘 → (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) = (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
3631, 35oveq12d 7449 . . . . . . . 8 (𝑛 = 𝑘 → ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
37 ovex 7464 . . . . . . . 8 ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ V
3836, 27, 37fvmpt 7016 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
394a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → i ∈ ℂ)
408a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ∈ ℂ)
419a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ≠ 0)
42 2nn0 12543 . . . . . . . . . . . . . 14 2 ∈ ℕ0
43 nn0mulcl 12562 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
4442, 43mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
45 peano2nn0 12566 . . . . . . . . . . . . 13 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4739, 40, 41, 46expdivd 14200 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) = ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1))))
4847oveq2d 7447 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
49 neg1cn 12380 . . . . . . . . . . . 12 -1 ∈ ℂ
50 expcl 14120 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5149, 50mpan 690 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
52 expcl 14120 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
534, 46, 52sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
54 3nn 12345 . . . . . . . . . . . . 13 3 ∈ ℕ
55 nnexpcl 14115 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5654, 46, 55sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5756nncnd 12282 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℂ)
5856nnne0d 12316 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ≠ 0)
5951, 53, 57, 58divassd 12078 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
60 expp1 14109 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
614, 44, 60sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
62 expmul 14148 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
634, 42, 62mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
64 i2 14241 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
6564oveq1i 7441 . . . . . . . . . . . . . . . 16 ((i↑2)↑𝑘) = (-1↑𝑘)
6663, 65eqtrdi 2793 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = (-1↑𝑘))
6766oveq1d 7446 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((i↑(2 · 𝑘)) · i) = ((-1↑𝑘) · i))
6861, 67eqtrd 2777 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((-1↑𝑘) · i))
6968oveq2d 7447 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7051, 51, 39mulassd 11284 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7149a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
72 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
7371, 72, 72expaddd 14188 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = ((-1↑𝑘) · (-1↑𝑘)))
74 expmul 14148 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
7549, 42, 74mp3an12 1453 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
76 neg1sqe1 14235 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
7776oveq1i 7441 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝑘) = (1↑𝑘)
7875, 77eqtrdi 2793 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (1↑𝑘))
79 nn0cn 12536 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
80792timesd 12509 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 + 𝑘))
8180oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (-1↑(𝑘 + 𝑘)))
82 nn0z 12638 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
83 1exp 14132 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
8482, 83syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
8578, 81, 843eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = 1)
8673, 85eqtr3d 2779 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (-1↑𝑘)) = 1)
8786oveq1d 7446 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = (1 · i))
884mullidi 11266 . . . . . . . . . . . . 13 (1 · i) = i
8987, 88eqtrdi 2793 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = i)
9069, 70, 893eqtr2d 2783 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = i)
9190oveq1d 7446 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9248, 59, 913eqtr2d 2783 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9392oveq1d 7446 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)))
94 expcl 14120 . . . . . . . . . 10 (((i / 3) ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
9510, 46, 94sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
96 nn0p1nn 12565 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9744, 96syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9897nncnd 12282 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
9997nnne0d 12316 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ≠ 0)
10051, 95, 98, 99divassd 12078 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
10139, 57, 98, 58, 99divdiv1d 12074 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10293, 100, 1013eqtr3d 2785 . . . . . . 7 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10357, 98mulcomd 11282 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1)) = (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))))
104103oveq2d 7447 . . . . . . 7 (𝑘 ∈ ℕ0 → (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10538, 102, 1043eqtrd 2781 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10697, 56nnmulcld 12319 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℕ)
107106nncnd 12282 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℂ)
108106nnne0d 12316 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ≠ 0)
10939, 107, 108divcld 12043 . . . . . 6 (𝑘 ∈ ℕ0 → (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))) ∈ ℂ)
110105, 109eqeltrd 2841 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
111110adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
11233oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑘 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑘) + 1)))
113 oveq2 7439 . . . . . . . . 9 (𝑛 = 𝑘 → (9↑𝑛) = (9↑𝑘))
114112, 113oveq12d 7449 . . . . . . . 8 (𝑛 = 𝑘 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
115114oveq2d 7447 . . . . . . 7 (𝑛 = 𝑘 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
116 log2cnv.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
117 ovex 7464 . . . . . . 7 (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ V
118115, 116, 117fvmpt 7016 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
119 expp1 14109 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
1208, 44, 119sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
121 expmul 14148 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
1228, 42, 121mp3an12 1453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
123 sq3 14237 . . . . . . . . . . . . . . . . 17 (3↑2) = 9
124123oveq1i 7441 . . . . . . . . . . . . . . . 16 ((3↑2)↑𝑘) = (9↑𝑘)
125122, 124eqtrdi 2793 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = (9↑𝑘))
126125oveq1d 7446 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((3↑(2 · 𝑘)) · 3) = ((9↑𝑘) · 3))
127 9nn 12364 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
128 nnexpcl 14115 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (9↑𝑘) ∈ ℕ)
129127, 128mpan 690 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℕ)
130129nncnd 12282 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℂ)
131 mulcom 11241 . . . . . . . . . . . . . . 15 (((9↑𝑘) ∈ ℂ ∧ 3 ∈ ℂ) → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
132130, 8, 131sylancl 586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
133120, 126, 1323eqtrd 2781 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = (3 · (9↑𝑘)))
13490, 133oveq12d 7449 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
13548, 59, 1343eqtr2d 2783 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
136135oveq1d 7446 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)))
137 nnmulcl 12290 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ (9↑𝑘) ∈ ℕ) → (3 · (9↑𝑘)) ∈ ℕ)
13854, 129, 137sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℕ)
139138nncnd 12282 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℂ)
140138nnne0d 12316 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ≠ 0)
14139, 139, 98, 140, 99divdiv1d 12074 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
142136, 100, 1413eqtr3d 2785 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
14340, 130, 98mul32d 11471 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
144143oveq2d 7447 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
14538, 142, 1443eqtrd 2781 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
146145oveq2d 7447 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
147 nnmulcl 12290 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
14854, 97, 147sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
149148, 129nnmulcld 12319 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℕ)
150149nncnd 12282 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℂ)
151149nnne0d 12316 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ≠ 0)
15239, 150, 151divcld 12043 . . . . . . . 8 (𝑘 ∈ ℕ0 → (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ)
153 mulcom 11241 . . . . . . . 8 (((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ ∧ (2 / i) ∈ ℂ) → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
154152, 6, 153sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
1553a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
1565a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → i ≠ 0)
157155, 39, 150, 156, 151dmdcand 12072 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
158146, 154, 1573eqtr2d 2783 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
159118, 158eqtr4d 2780 . . . . 5 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
160159adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
1611, 2, 7, 30, 111, 160isermulc2 15694 . . 3 (⊤ → seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3))))
162161mptru 1547 . 2 seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3)))
163 bndatandm 26972 . . . . . . . 8 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → (i / 3) ∈ dom arctan)
16410, 26, 163mp2an 692 . . . . . . 7 (i / 3) ∈ dom arctan
165 atanval 26927 . . . . . . 7 ((i / 3) ∈ dom arctan → (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))))
166164, 165ax-mp 5 . . . . . 6 (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))))
167 df-4 12331 . . . . . . . . . . . . 13 4 = (3 + 1)
168167oveq1i 7441 . . . . . . . . . . . 12 (4 / 3) = ((3 + 1) / 3)
169 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
1708, 169, 8, 9divdiri 12024 . . . . . . . . . . . 12 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
1718, 9dividi 12000 . . . . . . . . . . . . 13 (3 / 3) = 1
172171oveq1i 7441 . . . . . . . . . . . 12 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
173168, 170, 1723eqtri 2769 . . . . . . . . . . 11 (4 / 3) = (1 + (1 / 3))
174169, 8, 9divcli 12009 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
175169, 174subnegi 11588 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 + (1 / 3))
176 divneg 11959 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(1 / 3) = (-1 / 3))
177169, 8, 9, 176mp3an 1463 . . . . . . . . . . . . 13 -(1 / 3) = (-1 / 3)
178 ixi 11892 . . . . . . . . . . . . . 14 (i · i) = -1
179178oveq1i 7441 . . . . . . . . . . . . 13 ((i · i) / 3) = (-1 / 3)
1804, 4, 8, 9divassi 12023 . . . . . . . . . . . . 13 ((i · i) / 3) = (i · (i / 3))
181177, 179, 1803eqtr2i 2771 . . . . . . . . . . . 12 -(1 / 3) = (i · (i / 3))
182181oveq2i 7442 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 − (i · (i / 3)))
183173, 175, 1823eqtr2ri 2772 . . . . . . . . . 10 (1 − (i · (i / 3))) = (4 / 3)
184183fveq2i 6909 . . . . . . . . 9 (log‘(1 − (i · (i / 3)))) = (log‘(4 / 3))
1858, 9pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
186 divsubdir 11961 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
1878, 169, 185, 186mp3an 1463 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
188 3m1e2 12394 . . . . . . . . . . . . 13 (3 − 1) = 2
189188oveq1i 7441 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
190171oveq1i 7441 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
191187, 189, 1903eqtr3i 2773 . . . . . . . . . . 11 (2 / 3) = (1 − (1 / 3))
192169, 174negsubi 11587 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 − (1 / 3))
193181oveq2i 7442 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 + (i · (i / 3)))
194191, 192, 1933eqtr2ri 2772 . . . . . . . . . 10 (1 + (i · (i / 3))) = (2 / 3)
195194fveq2i 6909 . . . . . . . . 9 (log‘(1 + (i · (i / 3)))) = (log‘(2 / 3))
196184, 195oveq12i 7443 . . . . . . . 8 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
197 4re 12350 . . . . . . . . . . 11 4 ∈ ℝ
198 4pos 12373 . . . . . . . . . . 11 0 < 4
199197, 198elrpii 13037 . . . . . . . . . 10 4 ∈ ℝ+
200 3rp 13040 . . . . . . . . . 10 3 ∈ ℝ+
201 rpdivcl 13060 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (4 / 3) ∈ ℝ+)
202199, 200, 201mp2an 692 . . . . . . . . 9 (4 / 3) ∈ ℝ+
203 2rp 13039 . . . . . . . . . 10 2 ∈ ℝ+
204 rpdivcl 13060 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (2 / 3) ∈ ℝ+)
205203, 200, 204mp2an 692 . . . . . . . . 9 (2 / 3) ∈ ℝ+
206 relogdiv 26635 . . . . . . . . 9 (((4 / 3) ∈ ℝ+ ∧ (2 / 3) ∈ ℝ+) → (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3))))
207202, 205, 206mp2an 692 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
208 4cn 12351 . . . . . . . . . . 11 4 ∈ ℂ
209 2cnne0 12476 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
210 divcan7 11976 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((4 / 3) / (2 / 3)) = (4 / 2))
211208, 209, 185, 210mp3an 1463 . . . . . . . . . 10 ((4 / 3) / (2 / 3)) = (4 / 2)
212 4d2e2 12436 . . . . . . . . . 10 (4 / 2) = 2
213211, 212eqtri 2765 . . . . . . . . 9 ((4 / 3) / (2 / 3)) = 2
214213fveq2i 6909 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = (log‘2)
215196, 207, 2143eqtr2i 2771 . . . . . . 7 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = (log‘2)
216215oveq2i 7442 . . . . . 6 ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))) = ((i / 2) · (log‘2))
217166, 216eqtri 2765 . . . . 5 (arctan‘(i / 3)) = ((i / 2) · (log‘2))
218217oveq2i 7442 . . . 4 ((2 / i) · (arctan‘(i / 3))) = ((2 / i) · ((i / 2) · (log‘2)))
219 2ne0 12370 . . . . . 6 2 ≠ 0
2204, 3, 219divcli 12009 . . . . 5 (i / 2) ∈ ℂ
221 logcl 26610 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (log‘2) ∈ ℂ)
2223, 219, 221mp2an 692 . . . . 5 (log‘2) ∈ ℂ
2236, 220, 222mulassi 11272 . . . 4 (((2 / i) · (i / 2)) · (log‘2)) = ((2 / i) · ((i / 2) · (log‘2)))
224218, 223eqtr4i 2768 . . 3 ((2 / i) · (arctan‘(i / 3))) = (((2 / i) · (i / 2)) · (log‘2))
225 divcan6 11974 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((2 / i) · (i / 2)) = 1)
2263, 219, 4, 5, 225mp4an 693 . . . 4 ((2 / i) · (i / 2)) = 1
227226oveq1i 7441 . . 3 (((2 / i) · (i / 2)) · (log‘2)) = (1 · (log‘2))
228222mullidi 11266 . . 3 (1 · (log‘2)) = (log‘2)
229224, 227, 2283eqtri 2769 . 2 ((2 / i) · (arctan‘(i / 3))) = (log‘2)
230162, 229breqtri 5168 1 seq0( + , 𝐹) ⇝ (log‘2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  9c9 12328  0cn0 12526  cz 12613  +crp 13034  seqcseq 14042  cexp 14102  abscabs 15273  cli 15520  logclog 26596  arctancatan 26907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-atan 26910
This theorem is referenced by:  log2tlbnd  26988
  Copyright terms: Public domain W3C validator