MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Visualization version   GIF version

Theorem log2cnv 25449
Description: Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
Assertion
Ref Expression
log2cnv seq0( + , 𝐹) ⇝ (log‘2)

Proof of Theorem log2cnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . . . 4 0 = (ℤ‘0)
2 0zd 11981 . . . 4 (⊤ → 0 ∈ ℤ)
3 2cn 11700 . . . . . 6 2 ∈ ℂ
4 ax-icn 10584 . . . . . 6 i ∈ ℂ
5 ine0 11063 . . . . . 6 i ≠ 0
63, 4, 5divcli 11370 . . . . 5 (2 / i) ∈ ℂ
76a1i 11 . . . 4 (⊤ → (2 / i) ∈ ℂ)
8 3cn 11706 . . . . . . 7 3 ∈ ℂ
9 3ne0 11731 . . . . . . 7 3 ≠ 0
104, 8, 9divcli 11370 . . . . . 6 (i / 3) ∈ ℂ
11 absdiv 14643 . . . . . . . . 9 ((i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (abs‘(i / 3)) = ((abs‘i) / (abs‘3)))
124, 8, 9, 11mp3an 1452 . . . . . . . 8 (abs‘(i / 3)) = ((abs‘i) / (abs‘3))
13 absi 14634 . . . . . . . . 9 (abs‘i) = 1
14 3re 11705 . . . . . . . . . 10 3 ∈ ℝ
15 0re 10631 . . . . . . . . . . 11 0 ∈ ℝ
16 3pos 11730 . . . . . . . . . . 11 0 < 3
1715, 14, 16ltleii 10751 . . . . . . . . . 10 0 ≤ 3
18 absid 14644 . . . . . . . . . 10 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
1914, 17, 18mp2an 688 . . . . . . . . 9 (abs‘3) = 3
2013, 19oveq12i 7157 . . . . . . . 8 ((abs‘i) / (abs‘3)) = (1 / 3)
2112, 20eqtri 2841 . . . . . . 7 (abs‘(i / 3)) = (1 / 3)
22 1lt3 11798 . . . . . . . 8 1 < 3
23 recgt1 11524 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
2414, 16, 23mp2an 688 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
2522, 24mpbi 231 . . . . . . 7 (1 / 3) < 1
2621, 25eqbrtri 5078 . . . . . 6 (abs‘(i / 3)) < 1
27 eqid 2818 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))
2827atantayl3 25444 . . . . . 6 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
2910, 26, 28mp2an 688 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3))
3029a1i 11 . . . 4 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))) ⇝ (arctan‘(i / 3)))
31 oveq2 7153 . . . . . . . . 9 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
32 oveq2 7153 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
3332oveq1d 7160 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
3433oveq2d 7161 . . . . . . . . . 10 (𝑛 = 𝑘 → ((i / 3)↑((2 · 𝑛) + 1)) = ((i / 3)↑((2 · 𝑘) + 1)))
3534, 33oveq12d 7163 . . . . . . . . 9 (𝑛 = 𝑘 → (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)) = (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
3631, 35oveq12d 7163 . . . . . . . 8 (𝑛 = 𝑘 → ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
37 ovex 7178 . . . . . . . 8 ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ V
3836, 27, 37fvmpt 6761 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
394a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → i ∈ ℂ)
408a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ∈ ℂ)
419a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 3 ≠ 0)
42 2nn0 11902 . . . . . . . . . . . . . 14 2 ∈ ℕ0
43 nn0mulcl 11921 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
4442, 43mpan 686 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
45 peano2nn0 11925 . . . . . . . . . . . . 13 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4644, 45syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
4739, 40, 41, 46expdivd 13512 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) = ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1))))
4847oveq2d 7161 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
49 neg1cn 11739 . . . . . . . . . . . 12 -1 ∈ ℂ
50 expcl 13435 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
5149, 50mpan 686 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
52 expcl 13435 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
534, 46, 52sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) ∈ ℂ)
54 3nn 11704 . . . . . . . . . . . . 13 3 ∈ ℕ
55 nnexpcl 13430 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5654, 46, 55sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℕ)
5756nncnd 11642 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ∈ ℂ)
5856nnne0d 11675 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) ≠ 0)
5951, 53, 57, 58divassd 11439 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((i↑((2 · 𝑘) + 1)) / (3↑((2 · 𝑘) + 1)))))
60 expp1 13424 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
614, 44, 60sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((i↑(2 · 𝑘)) · i))
62 expmul 13462 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
634, 42, 62mp3an12 1442 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = ((i↑2)↑𝑘))
64 i2 13553 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
6564oveq1i 7155 . . . . . . . . . . . . . . . 16 ((i↑2)↑𝑘) = (-1↑𝑘)
6663, 65syl6eq 2869 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (i↑(2 · 𝑘)) = (-1↑𝑘))
6766oveq1d 7160 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((i↑(2 · 𝑘)) · i) = ((-1↑𝑘) · i))
6861, 67eqtrd 2853 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (i↑((2 · 𝑘) + 1)) = ((-1↑𝑘) · i))
6968oveq2d 7161 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7051, 51, 39mulassd 10652 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = ((-1↑𝑘) · ((-1↑𝑘) · i)))
7149a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
72 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
7371, 72, 72expaddd 13500 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = ((-1↑𝑘) · (-1↑𝑘)))
74 expmul 13462 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
7549, 42, 74mp3an12 1442 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = ((-1↑2)↑𝑘))
76 neg1sqe1 13547 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
7776oveq1i 7155 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑𝑘) = (1↑𝑘)
7875, 77syl6eq 2869 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (1↑𝑘))
79 nn0cn 11895 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
80792timesd 11868 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 + 𝑘))
8180oveq2d 7161 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = (-1↑(𝑘 + 𝑘)))
82 nn0z 11993 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
83 1exp 13446 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
8482, 83syl 17 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
8578, 81, 843eqtr3d 2861 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (-1↑(𝑘 + 𝑘)) = 1)
8673, 85eqtr3d 2855 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (-1↑𝑘)) = 1)
8786oveq1d 7160 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = (1 · i))
884mulid2i 10634 . . . . . . . . . . . . 13 (1 · i) = i
8987, 88syl6eq 2869 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (-1↑𝑘)) · i) = i)
9069, 70, 893eqtr2d 2859 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) = i)
9190oveq1d 7160 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9248, 59, 913eqtr2d 2859 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3↑((2 · 𝑘) + 1))))
9392oveq1d 7160 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)))
94 expcl 13435 . . . . . . . . . 10 (((i / 3) ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
9510, 46, 94sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((i / 3)↑((2 · 𝑘) + 1)) ∈ ℂ)
96 nn0p1nn 11924 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9744, 96syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
9897nncnd 11642 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
9997nnne0d 11675 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ≠ 0)
10051, 95, 98, 99divassd 11439 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
10139, 57, 98, 58, 99divdiv1d 11435 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((i / (3↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10293, 100, 1013eqtr3d 2861 . . . . . . 7 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))))
10357, 98mulcomd 10650 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1)) = (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))))
104103oveq2d 7161 . . . . . . 7 (𝑘 ∈ ℕ0 → (i / ((3↑((2 · 𝑘) + 1)) · ((2 · 𝑘) + 1))) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10538, 102, 1043eqtrd 2857 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))))
10697, 56nnmulcld 11678 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℕ)
107106nncnd 11642 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ∈ ℂ)
108106nnne0d 11675 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1))) ≠ 0)
10939, 107, 108divcld 11404 . . . . . 6 (𝑘 ∈ ℕ0 → (i / (((2 · 𝑘) + 1) · (3↑((2 · 𝑘) + 1)))) ∈ ℂ)
110105, 109eqeltrd 2910 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
111110adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) ∈ ℂ)
11233oveq2d 7161 . . . . . . . . 9 (𝑛 = 𝑘 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑘) + 1)))
113 oveq2 7153 . . . . . . . . 9 (𝑛 = 𝑘 → (9↑𝑛) = (9↑𝑘))
114112, 113oveq12d 7163 . . . . . . . 8 (𝑛 = 𝑘 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
115114oveq2d 7161 . . . . . . 7 (𝑛 = 𝑘 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
116 log2cnv.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
117 ovex 7178 . . . . . . 7 (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ V
118115, 116, 117fvmpt 6761 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
119 expp1 13424 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (2 · 𝑘) ∈ ℕ0) → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
1208, 44, 119sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = ((3↑(2 · 𝑘)) · 3))
121 expmul 13462 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℂ ∧ 2 ∈ ℕ0𝑘 ∈ ℕ0) → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
1228, 42, 121mp3an12 1442 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = ((3↑2)↑𝑘))
123 sq3 13549 . . . . . . . . . . . . . . . . 17 (3↑2) = 9
124123oveq1i 7155 . . . . . . . . . . . . . . . 16 ((3↑2)↑𝑘) = (9↑𝑘)
125122, 124syl6eq 2869 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (3↑(2 · 𝑘)) = (9↑𝑘))
126125oveq1d 7160 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((3↑(2 · 𝑘)) · 3) = ((9↑𝑘) · 3))
127 9nn 11723 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
128 nnexpcl 13430 . . . . . . . . . . . . . . . . 17 ((9 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (9↑𝑘) ∈ ℕ)
129127, 128mpan 686 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℕ)
130129nncnd 11642 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (9↑𝑘) ∈ ℂ)
131 mulcom 10611 . . . . . . . . . . . . . . 15 (((9↑𝑘) ∈ ℂ ∧ 3 ∈ ℂ) → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
132130, 8, 131sylancl 586 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((9↑𝑘) · 3) = (3 · (9↑𝑘)))
133120, 126, 1323eqtrd 2857 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (3↑((2 · 𝑘) + 1)) = (3 · (9↑𝑘)))
13490, 133oveq12d 7163 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · (i↑((2 · 𝑘) + 1))) / (3↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
13548, 59, 1343eqtr2d 2859 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) = (i / (3 · (9↑𝑘))))
136135oveq1d 7160 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (((-1↑𝑘) · ((i / 3)↑((2 · 𝑘) + 1))) / ((2 · 𝑘) + 1)) = ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)))
137 nnmulcl 11649 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ (9↑𝑘) ∈ ℕ) → (3 · (9↑𝑘)) ∈ ℕ)
13854, 129, 137sylancr 587 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℕ)
139138nncnd 11642 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ∈ ℂ)
140138nnne0d 11675 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · (9↑𝑘)) ≠ 0)
14139, 139, 98, 140, 99divdiv1d 11435 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((i / (3 · (9↑𝑘))) / ((2 · 𝑘) + 1)) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
142136, 100, 1413eqtr3d 2861 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (((i / 3)↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))))
14340, 130, 98mul32d 10838 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1)) = ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))
144143oveq2d 7161 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (i / ((3 · (9↑𝑘)) · ((2 · 𝑘) + 1))) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
14538, 142, 1443eqtrd 2857 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘) = (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
146145oveq2d 7161 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
147 nnmulcl 11649 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
14854, 97, 147sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (3 · ((2 · 𝑘) + 1)) ∈ ℕ)
149148, 129nnmulcld 11678 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℕ)
150149nncnd 11642 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ∈ ℂ)
151149nnne0d 11675 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) ≠ 0)
15239, 150, 151divcld 11404 . . . . . . . 8 (𝑘 ∈ ℕ0 → (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ)
153 mulcom 10611 . . . . . . . 8 (((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) ∈ ℂ ∧ (2 / i) ∈ ℂ) → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
154152, 6, 153sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = ((2 / i) · (i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))))
1553a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
1565a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → i ≠ 0)
157155, 39, 150, 156, 151dmdcand 11433 . . . . . . 7 (𝑘 ∈ ℕ0 → ((i / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) · (2 / i)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
158146, 154, 1573eqtr2d 2859 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)) = (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
159118, 158eqtr4d 2856 . . . . 5 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
160159adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((2 / i) · ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · (((i / 3)↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1))))‘𝑘)))
1611, 2, 7, 30, 111, 160isermulc2 15002 . . 3 (⊤ → seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3))))
162161mptru 1535 . 2 seq0( + , 𝐹) ⇝ ((2 / i) · (arctan‘(i / 3)))
163 bndatandm 25434 . . . . . . . 8 (((i / 3) ∈ ℂ ∧ (abs‘(i / 3)) < 1) → (i / 3) ∈ dom arctan)
16410, 26, 163mp2an 688 . . . . . . 7 (i / 3) ∈ dom arctan
165 atanval 25389 . . . . . . 7 ((i / 3) ∈ dom arctan → (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))))
166164, 165ax-mp 5 . . . . . 6 (arctan‘(i / 3)) = ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))))
167 df-4 11690 . . . . . . . . . . . . 13 4 = (3 + 1)
168167oveq1i 7155 . . . . . . . . . . . 12 (4 / 3) = ((3 + 1) / 3)
169 ax-1cn 10583 . . . . . . . . . . . . 13 1 ∈ ℂ
1708, 169, 8, 9divdiri 11385 . . . . . . . . . . . 12 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
1718, 9dividi 11361 . . . . . . . . . . . . 13 (3 / 3) = 1
172171oveq1i 7155 . . . . . . . . . . . 12 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
173168, 170, 1723eqtri 2845 . . . . . . . . . . 11 (4 / 3) = (1 + (1 / 3))
174169, 8, 9divcli 11370 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
175169, 174subnegi 10953 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 + (1 / 3))
176 divneg 11320 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(1 / 3) = (-1 / 3))
177169, 8, 9, 176mp3an 1452 . . . . . . . . . . . . 13 -(1 / 3) = (-1 / 3)
178 ixi 11257 . . . . . . . . . . . . . 14 (i · i) = -1
179178oveq1i 7155 . . . . . . . . . . . . 13 ((i · i) / 3) = (-1 / 3)
1804, 4, 8, 9divassi 11384 . . . . . . . . . . . . 13 ((i · i) / 3) = (i · (i / 3))
181177, 179, 1803eqtr2i 2847 . . . . . . . . . . . 12 -(1 / 3) = (i · (i / 3))
182181oveq2i 7156 . . . . . . . . . . 11 (1 − -(1 / 3)) = (1 − (i · (i / 3)))
183173, 175, 1823eqtr2ri 2848 . . . . . . . . . 10 (1 − (i · (i / 3))) = (4 / 3)
184183fveq2i 6666 . . . . . . . . 9 (log‘(1 − (i · (i / 3)))) = (log‘(4 / 3))
1858, 9pm3.2i 471 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
186 divsubdir 11322 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
1878, 169, 185, 186mp3an 1452 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
188 3m1e2 11753 . . . . . . . . . . . . 13 (3 − 1) = 2
189188oveq1i 7155 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
190171oveq1i 7155 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
191187, 189, 1903eqtr3i 2849 . . . . . . . . . . 11 (2 / 3) = (1 − (1 / 3))
192169, 174negsubi 10952 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 − (1 / 3))
193181oveq2i 7156 . . . . . . . . . . 11 (1 + -(1 / 3)) = (1 + (i · (i / 3)))
194191, 192, 1933eqtr2ri 2848 . . . . . . . . . 10 (1 + (i · (i / 3))) = (2 / 3)
195194fveq2i 6666 . . . . . . . . 9 (log‘(1 + (i · (i / 3)))) = (log‘(2 / 3))
196184, 195oveq12i 7157 . . . . . . . 8 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
197 4re 11709 . . . . . . . . . . 11 4 ∈ ℝ
198 4pos 11732 . . . . . . . . . . 11 0 < 4
199197, 198elrpii 12380 . . . . . . . . . 10 4 ∈ ℝ+
200 3rp 12383 . . . . . . . . . 10 3 ∈ ℝ+
201 rpdivcl 12402 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (4 / 3) ∈ ℝ+)
202199, 200, 201mp2an 688 . . . . . . . . 9 (4 / 3) ∈ ℝ+
203 2rp 12382 . . . . . . . . . 10 2 ∈ ℝ+
204 rpdivcl 12402 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (2 / 3) ∈ ℝ+)
205203, 200, 204mp2an 688 . . . . . . . . 9 (2 / 3) ∈ ℝ+
206 relogdiv 25103 . . . . . . . . 9 (((4 / 3) ∈ ℝ+ ∧ (2 / 3) ∈ ℝ+) → (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3))))
207202, 205, 206mp2an 688 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = ((log‘(4 / 3)) − (log‘(2 / 3)))
208 4cn 11710 . . . . . . . . . . 11 4 ∈ ℂ
209 2cnne0 11835 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
210 divcan7 11337 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((4 / 3) / (2 / 3)) = (4 / 2))
211208, 209, 185, 210mp3an 1452 . . . . . . . . . 10 ((4 / 3) / (2 / 3)) = (4 / 2)
212 4d2e2 11795 . . . . . . . . . 10 (4 / 2) = 2
213211, 212eqtri 2841 . . . . . . . . 9 ((4 / 3) / (2 / 3)) = 2
214213fveq2i 6666 . . . . . . . 8 (log‘((4 / 3) / (2 / 3))) = (log‘2)
215196, 207, 2143eqtr2i 2847 . . . . . . 7 ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3))))) = (log‘2)
216215oveq2i 7156 . . . . . 6 ((i / 2) · ((log‘(1 − (i · (i / 3)))) − (log‘(1 + (i · (i / 3)))))) = ((i / 2) · (log‘2))
217166, 216eqtri 2841 . . . . 5 (arctan‘(i / 3)) = ((i / 2) · (log‘2))
218217oveq2i 7156 . . . 4 ((2 / i) · (arctan‘(i / 3))) = ((2 / i) · ((i / 2) · (log‘2)))
219 2ne0 11729 . . . . . 6 2 ≠ 0
2204, 3, 219divcli 11370 . . . . 5 (i / 2) ∈ ℂ
221 logcl 25079 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0) → (log‘2) ∈ ℂ)
2223, 219, 221mp2an 688 . . . . 5 (log‘2) ∈ ℂ
2236, 220, 222mulassi 10640 . . . 4 (((2 / i) · (i / 2)) · (log‘2)) = ((2 / i) · ((i / 2) · (log‘2)))
224218, 223eqtr4i 2844 . . 3 ((2 / i) · (arctan‘(i / 3))) = (((2 / i) · (i / 2)) · (log‘2))
225 divcan6 11335 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((2 / i) · (i / 2)) = 1)
2263, 219, 4, 5, 225mp4an 689 . . . 4 ((2 / i) · (i / 2)) = 1
227226oveq1i 7155 . . 3 (((2 / i) · (i / 2)) · (log‘2)) = (1 · (log‘2))
228222mulid2i 10634 . . 3 (1 · (log‘2)) = (log‘2)
229224, 227, 2283eqtri 2845 . 2 ((2 / i) · (arctan‘(i / 3))) = (log‘2)
230162, 229breqtri 5082 1 seq0( + , 𝐹) ⇝ (log‘2)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3013   class class class wbr 5057  cmpt 5137  dom cdm 5548  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526  ici 10527   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  3c3 11681  4c4 11682  9c9 11687  0cn0 11885  cz 11969  +crp 12377  seqcseq 13357  cexp 13417  abscabs 14581  cli 14829  logclog 25065  arctancatan 25369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-dvds 15596  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-ulm 24892  df-log 25067  df-atan 25372
This theorem is referenced by:  log2tlbnd  25450
  Copyright terms: Public domain W3C validator