![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex2dlinvh | Structured version Visualization version GIF version |
Description: The halving functions π» are left inverses of the doubling function π·. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
smndex2dbas.m | β’ π = (EndoFMndββ0) |
smndex2dbas.b | β’ π΅ = (Baseβπ) |
smndex2dbas.0 | β’ 0 = (0gβπ) |
smndex2dbas.d | β’ π· = (π₯ β β0 β¦ (2 Β· π₯)) |
smndex2hbas.n | β’ π β β0 |
smndex2hbas.h | β’ π» = (π₯ β β0 β¦ if(2 β₯ π₯, (π₯ / 2), π)) |
Ref | Expression |
---|---|
smndex2dlinvh | β’ (π» β π·) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12514 | . . 3 β’ 2 β β0 | |
2 | nn0mulcl 12533 | . . . 4 β’ ((2 β β0 β§ π¦ β β0) β (2 Β· π¦) β β0) | |
3 | smndex2dbas.d | . . . . . 6 β’ π· = (π₯ β β0 β¦ (2 Β· π₯)) | |
4 | oveq2 7421 | . . . . . . 7 β’ (π₯ = π¦ β (2 Β· π₯) = (2 Β· π¦)) | |
5 | 4 | cbvmptv 5257 | . . . . . 6 β’ (π₯ β β0 β¦ (2 Β· π₯)) = (π¦ β β0 β¦ (2 Β· π¦)) |
6 | 3, 5 | eqtri 2753 | . . . . 5 β’ π· = (π¦ β β0 β¦ (2 Β· π¦)) |
7 | 6 | a1i 11 | . . . 4 β’ (2 β β0 β π· = (π¦ β β0 β¦ (2 Β· π¦))) |
8 | smndex2hbas.h | . . . . 5 β’ π» = (π₯ β β0 β¦ if(2 β₯ π₯, (π₯ / 2), π)) | |
9 | 8 | a1i 11 | . . . 4 β’ (2 β β0 β π» = (π₯ β β0 β¦ if(2 β₯ π₯, (π₯ / 2), π))) |
10 | breq2 5148 | . . . . 5 β’ (π₯ = (2 Β· π¦) β (2 β₯ π₯ β 2 β₯ (2 Β· π¦))) | |
11 | oveq1 7420 | . . . . 5 β’ (π₯ = (2 Β· π¦) β (π₯ / 2) = ((2 Β· π¦) / 2)) | |
12 | 10, 11 | ifbieq1d 4549 | . . . 4 β’ (π₯ = (2 Β· π¦) β if(2 β₯ π₯, (π₯ / 2), π) = if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π)) |
13 | 2, 7, 9, 12 | fmptco 7132 | . . 3 β’ (2 β β0 β (π» β π·) = (π¦ β β0 β¦ if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π))) |
14 | 1, 13 | ax-mp 5 | . 2 β’ (π» β π·) = (π¦ β β0 β¦ if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π)) |
15 | nn0z 12608 | . . . . . 6 β’ (π¦ β β0 β π¦ β β€) | |
16 | eqidd 2726 | . . . . . 6 β’ (π¦ β β0 β (2 Β· π¦) = (2 Β· π¦)) | |
17 | 2teven 16326 | . . . . . 6 β’ ((π¦ β β€ β§ (2 Β· π¦) = (2 Β· π¦)) β 2 β₯ (2 Β· π¦)) | |
18 | 15, 16, 17 | syl2anc 582 | . . . . 5 β’ (π¦ β β0 β 2 β₯ (2 Β· π¦)) |
19 | 18 | iftrued 4533 | . . . 4 β’ (π¦ β β0 β if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π) = ((2 Β· π¦) / 2)) |
20 | 19 | mpteq2ia 5247 | . . 3 β’ (π¦ β β0 β¦ if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π)) = (π¦ β β0 β¦ ((2 Β· π¦) / 2)) |
21 | nn0cn 12507 | . . . . . 6 β’ (π¦ β β0 β π¦ β β) | |
22 | 2cnd 12315 | . . . . . 6 β’ (π¦ β β0 β 2 β β) | |
23 | 2ne0 12341 | . . . . . . 7 β’ 2 β 0 | |
24 | 23 | a1i 11 | . . . . . 6 β’ (π¦ β β0 β 2 β 0) |
25 | 21, 22, 24 | divcan3d 12020 | . . . . 5 β’ (π¦ β β0 β ((2 Β· π¦) / 2) = π¦) |
26 | 25 | mpteq2ia 5247 | . . . 4 β’ (π¦ β β0 β¦ ((2 Β· π¦) / 2)) = (π¦ β β0 β¦ π¦) |
27 | smndex2dbas.0 | . . . . 5 β’ 0 = (0gβπ) | |
28 | nn0ex 12503 | . . . . . 6 β’ β0 β V | |
29 | smndex2dbas.m | . . . . . . 7 β’ π = (EndoFMndββ0) | |
30 | 29 | efmndid 18839 | . . . . . 6 β’ (β0 β V β ( I βΎ β0) = (0gβπ)) |
31 | 28, 30 | ax-mp 5 | . . . . 5 β’ ( I βΎ β0) = (0gβπ) |
32 | mptresid 6050 | . . . . 5 β’ ( I βΎ β0) = (π¦ β β0 β¦ π¦) | |
33 | 27, 31, 32 | 3eqtr2ri 2760 | . . . 4 β’ (π¦ β β0 β¦ π¦) = 0 |
34 | 26, 33 | eqtri 2753 | . . 3 β’ (π¦ β β0 β¦ ((2 Β· π¦) / 2)) = 0 |
35 | 20, 34 | eqtri 2753 | . 2 β’ (π¦ β β0 β¦ if(2 β₯ (2 Β· π¦), ((2 Β· π¦) / 2), π)) = 0 |
36 | 14, 35 | eqtri 2753 | 1 β’ (π» β π·) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 ifcif 4525 class class class wbr 5144 β¦ cmpt 5227 I cid 5570 βΎ cres 5675 β ccom 5677 βcfv 6543 (class class class)co 7413 0cc0 11133 Β· cmul 11138 / cdiv 11896 2c2 12292 β0cn0 12497 β€cz 12583 β₯ cdvds 16225 Basecbs 17174 0gc0g 17415 EndoFMndcefmnd 18819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-dvds 16226 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-tset 17246 df-0g 17417 df-efmnd 18820 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |