MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dlinvh Structured version   Visualization version   GIF version

Theorem smndex2dlinvh 18942
Description: The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
smndex2hbas.n 𝑁 ∈ ℕ0
smndex2hbas.h 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
Assertion
Ref Expression
smndex2dlinvh (𝐻𝐷) = 0
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝑀(𝑥)   0 (𝑥)

Proof of Theorem smndex2dlinvh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12540 . . 3 2 ∈ ℕ0
2 nn0mulcl 12559 . . . 4 ((2 ∈ ℕ0𝑦 ∈ ℕ0) → (2 · 𝑦) ∈ ℕ0)
3 smndex2dbas.d . . . . . 6 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
4 oveq2 7438 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
54cbvmptv 5260 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
63, 5eqtri 2762 . . . . 5 𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
76a1i 11 . . . 4 (2 ∈ ℕ0𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦)))
8 smndex2hbas.h . . . . 5 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
98a1i 11 . . . 4 (2 ∈ ℕ0𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)))
10 breq2 5151 . . . . 5 (𝑥 = (2 · 𝑦) → (2 ∥ 𝑥 ↔ 2 ∥ (2 · 𝑦)))
11 oveq1 7437 . . . . 5 (𝑥 = (2 · 𝑦) → (𝑥 / 2) = ((2 · 𝑦) / 2))
1210, 11ifbieq1d 4554 . . . 4 (𝑥 = (2 · 𝑦) → if(2 ∥ 𝑥, (𝑥 / 2), 𝑁) = if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
132, 7, 9, 12fmptco 7148 . . 3 (2 ∈ ℕ0 → (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)))
141, 13ax-mp 5 . 2 (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
15 nn0z 12635 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
16 eqidd 2735 . . . . . 6 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (2 · 𝑦))
17 2teven 16388 . . . . . 6 ((𝑦 ∈ ℤ ∧ (2 · 𝑦) = (2 · 𝑦)) → 2 ∥ (2 · 𝑦))
1815, 16, 17syl2anc 584 . . . . 5 (𝑦 ∈ ℕ0 → 2 ∥ (2 · 𝑦))
1918iftrued 4538 . . . 4 (𝑦 ∈ ℕ0 → if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁) = ((2 · 𝑦) / 2))
2019mpteq2ia 5250 . . 3 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2))
21 nn0cn 12533 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
22 2cnd 12341 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
23 2ne0 12367 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ≠ 0)
2521, 22, 24divcan3d 12045 . . . . 5 (𝑦 ∈ ℕ0 → ((2 · 𝑦) / 2) = 𝑦)
2625mpteq2ia 5250 . . . 4 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = (𝑦 ∈ ℕ0𝑦)
27 smndex2dbas.0 . . . . 5 0 = (0g𝑀)
28 nn0ex 12529 . . . . . 6 0 ∈ V
29 smndex2dbas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
3029efmndid 18913 . . . . . 6 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
3128, 30ax-mp 5 . . . . 5 ( I ↾ ℕ0) = (0g𝑀)
32 mptresid 6070 . . . . 5 ( I ↾ ℕ0) = (𝑦 ∈ ℕ0𝑦)
3327, 31, 323eqtr2ri 2769 . . . 4 (𝑦 ∈ ℕ0𝑦) = 0
3426, 33eqtri 2762 . . 3 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = 0
3520, 34eqtri 2762 . 2 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = 0
3614, 35eqtri 2762 1 (𝐻𝐷) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  ifcif 4530   class class class wbr 5147  cmpt 5230   I cid 5581  cres 5690  ccom 5692  cfv 6562  (class class class)co 7430  0cc0 11152   · cmul 11157   / cdiv 11917  2c2 12318  0cn0 12523  cz 12610  cdvds 16286  Basecbs 17244  0gc0g 17485  EndoFMndcefmnd 18893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-tset 17316  df-0g 17487  df-efmnd 18894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator