MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dlinvh Structured version   Visualization version   GIF version

Theorem smndex2dlinvh 18820
Description: The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
smndex2hbas.n 𝑁 ∈ ℕ0
smndex2hbas.h 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
Assertion
Ref Expression
smndex2dlinvh (𝐻𝐷) = 0
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝑀(𝑥)   0 (𝑥)

Proof of Theorem smndex2dlinvh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12435 . . 3 2 ∈ ℕ0
2 nn0mulcl 12454 . . . 4 ((2 ∈ ℕ0𝑦 ∈ ℕ0) → (2 · 𝑦) ∈ ℕ0)
3 smndex2dbas.d . . . . . 6 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
4 oveq2 7377 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
54cbvmptv 5206 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
63, 5eqtri 2752 . . . . 5 𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
76a1i 11 . . . 4 (2 ∈ ℕ0𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦)))
8 smndex2hbas.h . . . . 5 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
98a1i 11 . . . 4 (2 ∈ ℕ0𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)))
10 breq2 5106 . . . . 5 (𝑥 = (2 · 𝑦) → (2 ∥ 𝑥 ↔ 2 ∥ (2 · 𝑦)))
11 oveq1 7376 . . . . 5 (𝑥 = (2 · 𝑦) → (𝑥 / 2) = ((2 · 𝑦) / 2))
1210, 11ifbieq1d 4509 . . . 4 (𝑥 = (2 · 𝑦) → if(2 ∥ 𝑥, (𝑥 / 2), 𝑁) = if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
132, 7, 9, 12fmptco 7083 . . 3 (2 ∈ ℕ0 → (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)))
141, 13ax-mp 5 . 2 (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
15 nn0z 12530 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
16 eqidd 2730 . . . . . 6 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (2 · 𝑦))
17 2teven 16301 . . . . . 6 ((𝑦 ∈ ℤ ∧ (2 · 𝑦) = (2 · 𝑦)) → 2 ∥ (2 · 𝑦))
1815, 16, 17syl2anc 584 . . . . 5 (𝑦 ∈ ℕ0 → 2 ∥ (2 · 𝑦))
1918iftrued 4492 . . . 4 (𝑦 ∈ ℕ0 → if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁) = ((2 · 𝑦) / 2))
2019mpteq2ia 5197 . . 3 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2))
21 nn0cn 12428 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
22 2cnd 12240 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
23 2ne0 12266 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ≠ 0)
2521, 22, 24divcan3d 11939 . . . . 5 (𝑦 ∈ ℕ0 → ((2 · 𝑦) / 2) = 𝑦)
2625mpteq2ia 5197 . . . 4 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = (𝑦 ∈ ℕ0𝑦)
27 smndex2dbas.0 . . . . 5 0 = (0g𝑀)
28 nn0ex 12424 . . . . . 6 0 ∈ V
29 smndex2dbas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
3029efmndid 18791 . . . . . 6 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
3128, 30ax-mp 5 . . . . 5 ( I ↾ ℕ0) = (0g𝑀)
32 mptresid 6011 . . . . 5 ( I ↾ ℕ0) = (𝑦 ∈ ℕ0𝑦)
3327, 31, 323eqtr2ri 2759 . . . 4 (𝑦 ∈ ℕ0𝑦) = 0
3426, 33eqtri 2752 . . 3 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = 0
3520, 34eqtri 2752 . 2 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = 0
3614, 35eqtri 2752 1 (𝐻𝐷) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  ifcif 4484   class class class wbr 5102  cmpt 5183   I cid 5525  cres 5633  ccom 5635  cfv 6499  (class class class)co 7369  0cc0 11044   · cmul 11049   / cdiv 11811  2c2 12217  0cn0 12418  cz 12505  cdvds 16198  Basecbs 17155  0gc0g 17378  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-dvds 16199  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-tset 17215  df-0g 17380  df-efmnd 18772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator