MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dlinvh Structured version   Visualization version   GIF version

Theorem smndex2dlinvh 18952
Description: The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
smndex2hbas.n 𝑁 ∈ ℕ0
smndex2hbas.h 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
Assertion
Ref Expression
smndex2dlinvh (𝐻𝐷) = 0
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝑀(𝑥)   0 (𝑥)

Proof of Theorem smndex2dlinvh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12570 . . 3 2 ∈ ℕ0
2 nn0mulcl 12589 . . . 4 ((2 ∈ ℕ0𝑦 ∈ ℕ0) → (2 · 𝑦) ∈ ℕ0)
3 smndex2dbas.d . . . . . 6 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
4 oveq2 7456 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
54cbvmptv 5279 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
63, 5eqtri 2768 . . . . 5 𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))
76a1i 11 . . . 4 (2 ∈ ℕ0𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦)))
8 smndex2hbas.h . . . . 5 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))
98a1i 11 . . . 4 (2 ∈ ℕ0𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)))
10 breq2 5170 . . . . 5 (𝑥 = (2 · 𝑦) → (2 ∥ 𝑥 ↔ 2 ∥ (2 · 𝑦)))
11 oveq1 7455 . . . . 5 (𝑥 = (2 · 𝑦) → (𝑥 / 2) = ((2 · 𝑦) / 2))
1210, 11ifbieq1d 4572 . . . 4 (𝑥 = (2 · 𝑦) → if(2 ∥ 𝑥, (𝑥 / 2), 𝑁) = if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
132, 7, 9, 12fmptco 7163 . . 3 (2 ∈ ℕ0 → (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)))
141, 13ax-mp 5 . 2 (𝐻𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))
15 nn0z 12664 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
16 eqidd 2741 . . . . . 6 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (2 · 𝑦))
17 2teven 16403 . . . . . 6 ((𝑦 ∈ ℤ ∧ (2 · 𝑦) = (2 · 𝑦)) → 2 ∥ (2 · 𝑦))
1815, 16, 17syl2anc 583 . . . . 5 (𝑦 ∈ ℕ0 → 2 ∥ (2 · 𝑦))
1918iftrued 4556 . . . 4 (𝑦 ∈ ℕ0 → if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁) = ((2 · 𝑦) / 2))
2019mpteq2ia 5269 . . 3 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2))
21 nn0cn 12563 . . . . . 6 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
22 2cnd 12371 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
23 2ne0 12397 . . . . . . 7 2 ≠ 0
2423a1i 11 . . . . . 6 (𝑦 ∈ ℕ0 → 2 ≠ 0)
2521, 22, 24divcan3d 12075 . . . . 5 (𝑦 ∈ ℕ0 → ((2 · 𝑦) / 2) = 𝑦)
2625mpteq2ia 5269 . . . 4 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = (𝑦 ∈ ℕ0𝑦)
27 smndex2dbas.0 . . . . 5 0 = (0g𝑀)
28 nn0ex 12559 . . . . . 6 0 ∈ V
29 smndex2dbas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
3029efmndid 18923 . . . . . 6 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
3128, 30ax-mp 5 . . . . 5 ( I ↾ ℕ0) = (0g𝑀)
32 mptresid 6080 . . . . 5 ( I ↾ ℕ0) = (𝑦 ∈ ℕ0𝑦)
3327, 31, 323eqtr2ri 2775 . . . 4 (𝑦 ∈ ℕ0𝑦) = 0
3426, 33eqtri 2768 . . 3 (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = 0
3520, 34eqtri 2768 . 2 (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = 0
3614, 35eqtri 2768 1 (𝐻𝐷) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249   I cid 5592  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  0cc0 11184   · cmul 11189   / cdiv 11947  2c2 12348  0cn0 12553  cz 12639  cdvds 16302  Basecbs 17258  0gc0g 17499  EndoFMndcefmnd 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-dvds 16303  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-tset 17330  df-0g 17501  df-efmnd 18904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator