![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex2dlinvh | Structured version Visualization version GIF version |
Description: The halving functions 𝐻 are left inverses of the doubling function 𝐷. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
smndex2dbas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex2dbas.b | ⊢ 𝐵 = (Base‘𝑀) |
smndex2dbas.0 | ⊢ 0 = (0g‘𝑀) |
smndex2dbas.d | ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) |
smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 |
smndex2hbas.h | ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) |
Ref | Expression |
---|---|
smndex2dlinvh | ⊢ (𝐻 ∘ 𝐷) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12570 | . . 3 ⊢ 2 ∈ ℕ0 | |
2 | nn0mulcl 12589 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (2 · 𝑦) ∈ ℕ0) | |
3 | smndex2dbas.d | . . . . . 6 ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) | |
4 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) | |
5 | 4 | cbvmptv 5279 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦)) |
6 | 3, 5 | eqtri 2768 | . . . . 5 ⊢ 𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦)) |
7 | 6 | a1i 11 | . . . 4 ⊢ (2 ∈ ℕ0 → 𝐷 = (𝑦 ∈ ℕ0 ↦ (2 · 𝑦))) |
8 | smndex2hbas.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (2 ∈ ℕ0 → 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁))) |
10 | breq2 5170 | . . . . 5 ⊢ (𝑥 = (2 · 𝑦) → (2 ∥ 𝑥 ↔ 2 ∥ (2 · 𝑦))) | |
11 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = (2 · 𝑦) → (𝑥 / 2) = ((2 · 𝑦) / 2)) | |
12 | 10, 11 | ifbieq1d 4572 | . . . 4 ⊢ (𝑥 = (2 · 𝑦) → if(2 ∥ 𝑥, (𝑥 / 2), 𝑁) = if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) |
13 | 2, 7, 9, 12 | fmptco 7163 | . . 3 ⊢ (2 ∈ ℕ0 → (𝐻 ∘ 𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁))) |
14 | 1, 13 | ax-mp 5 | . 2 ⊢ (𝐻 ∘ 𝐷) = (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) |
15 | nn0z 12664 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
16 | eqidd 2741 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (2 · 𝑦) = (2 · 𝑦)) | |
17 | 2teven 16403 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ (2 · 𝑦) = (2 · 𝑦)) → 2 ∥ (2 · 𝑦)) | |
18 | 15, 16, 17 | syl2anc 583 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 2 ∥ (2 · 𝑦)) |
19 | 18 | iftrued 4556 | . . . 4 ⊢ (𝑦 ∈ ℕ0 → if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁) = ((2 · 𝑦) / 2)) |
20 | 19 | mpteq2ia 5269 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) |
21 | nn0cn 12563 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ) | |
22 | 2cnd 12371 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → 2 ∈ ℂ) | |
23 | 2ne0 12397 | . . . . . . 7 ⊢ 2 ≠ 0 | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → 2 ≠ 0) |
25 | 21, 22, 24 | divcan3d 12075 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → ((2 · 𝑦) / 2) = 𝑦) |
26 | 25 | mpteq2ia 5269 | . . . 4 ⊢ (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = (𝑦 ∈ ℕ0 ↦ 𝑦) |
27 | smndex2dbas.0 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
28 | nn0ex 12559 | . . . . . 6 ⊢ ℕ0 ∈ V | |
29 | smndex2dbas.m | . . . . . . 7 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
30 | 29 | efmndid 18923 | . . . . . 6 ⊢ (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g‘𝑀)) |
31 | 28, 30 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ ℕ0) = (0g‘𝑀) |
32 | mptresid 6080 | . . . . 5 ⊢ ( I ↾ ℕ0) = (𝑦 ∈ ℕ0 ↦ 𝑦) | |
33 | 27, 31, 32 | 3eqtr2ri 2775 | . . . 4 ⊢ (𝑦 ∈ ℕ0 ↦ 𝑦) = 0 |
34 | 26, 33 | eqtri 2768 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((2 · 𝑦) / 2)) = 0 |
35 | 20, 34 | eqtri 2768 | . 2 ⊢ (𝑦 ∈ ℕ0 ↦ if(2 ∥ (2 · 𝑦), ((2 · 𝑦) / 2), 𝑁)) = 0 |
36 | 14, 35 | eqtri 2768 | 1 ⊢ (𝐻 ∘ 𝐷) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 0cc0 11184 · cmul 11189 / cdiv 11947 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ∥ cdvds 16302 Basecbs 17258 0gc0g 17499 EndoFMndcefmnd 18903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-dvds 16303 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-tset 17330 df-0g 17501 df-efmnd 18904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |