Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul100 Structured version   Visualization version   GIF version

Theorem dpmul100 32879
Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dpmul100 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶

Proof of Theorem dpmul100
StepHypRef Expression
1 dp3mul10.a . . . . 5 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . . . 7 𝐵 ∈ ℕ0
32nn0rei 12537 . . . . . 6 𝐵 ∈ ℝ
4 dp3mul10.c . . . . . 6 𝐶 ∈ ℝ
5 dp2cl 32862 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 692 . . . . 5 𝐵𝐶 ∈ ℝ
71, 6dpval2 32875 . . . 4 (𝐴.𝐵𝐶) = (𝐴 + (𝐵𝐶 / 10))
81nn0cni 12538 . . . . 5 𝐴 ∈ ℂ
96recni 11275 . . . . . 6 𝐵𝐶 ∈ ℂ
10 10nn0 12751 . . . . . . 7 10 ∈ ℕ0
1110nn0cni 12538 . . . . . 6 10 ∈ ℂ
12 10nn 12749 . . . . . . 7 10 ∈ ℕ
1312nnne0i 12306 . . . . . 6 10 ≠ 0
149, 11, 13divcli 12009 . . . . 5 (𝐵𝐶 / 10) ∈ ℂ
158, 14addcli 11267 . . . 4 (𝐴 + (𝐵𝐶 / 10)) ∈ ℂ
167, 15eqeltri 2837 . . 3 (𝐴.𝐵𝐶) ∈ ℂ
1716, 11, 11mulassi 11272 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = ((𝐴.𝐵𝐶) · (10 · 10))
181, 2, 4dfdec100 32832 . . 3 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)
1911, 8, 11mul32i 11457 . . . . 5 ((10 · 𝐴) · 10) = ((10 · 10) · 𝐴)
2010dec0u 12754 . . . . . 6 (10 · 10) = 100
2120oveq1i 7441 . . . . 5 ((10 · 10) · 𝐴) = (100 · 𝐴)
2219, 21eqtri 2765 . . . 4 ((10 · 𝐴) · 10) = (100 · 𝐴)
232, 4dpval3 32876 . . . . . 6 (𝐵.𝐶) = 𝐵𝐶
2423oveq1i 7441 . . . . 5 ((𝐵.𝐶) · 10) = (𝐵𝐶 · 10)
252, 4dpmul10 32877 . . . . 5 ((𝐵.𝐶) · 10) = 𝐵𝐶
2624, 25eqtr3i 2767 . . . 4 (𝐵𝐶 · 10) = 𝐵𝐶
2722, 26oveq12i 7443 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = ((100 · 𝐴) + 𝐵𝐶)
281, 6dpmul10 32877 . . . . . 6 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
29 dfdec10 12736 . . . . . 6 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
3028, 29eqtri 2765 . . . . 5 ((𝐴.𝐵𝐶) · 10) = ((10 · 𝐴) + 𝐵𝐶)
3130oveq1i 7441 . . . 4 (((𝐴.𝐵𝐶) · 10) · 10) = (((10 · 𝐴) + 𝐵𝐶) · 10)
3211, 8mulcli 11268 . . . . 5 (10 · 𝐴) ∈ ℂ
3332, 9, 11adddiri 11274 . . . 4 (((10 · 𝐴) + 𝐵𝐶) · 10) = (((10 · 𝐴) · 10) + (𝐵𝐶 · 10))
3431, 33eqtr2i 2766 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = (((𝐴.𝐵𝐶) · 10) · 10)
3518, 27, 343eqtr2ri 2772 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = 𝐴𝐵𝐶
3620oveq2i 7442 . 2 ((𝐴.𝐵𝐶) · (10 · 10)) = ((𝐴.𝐵𝐶) · 100)
3717, 35, 363eqtr3ri 2774 1 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   / cdiv 11920  0cn0 12526  cdc 12733  cdp2 32853  .cdp 32870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-dec 12734  df-dp2 32854  df-dp 32871
This theorem is referenced by:  dpmul1000  32881  dpadd3  32894  dpmul  32895  dpmul4  32896
  Copyright terms: Public domain W3C validator