Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul100 Structured version   Visualization version   GIF version

Theorem dpmul100 29941
Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dpmul100 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶

Proof of Theorem dpmul100
StepHypRef Expression
1 dp3mul10.a . . . . 5 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . . . 7 𝐵 ∈ ℕ0
32nn0rei 11506 . . . . . 6 𝐵 ∈ ℝ
4 dp3mul10.c . . . . . 6 𝐶 ∈ ℝ
5 dp2cl 29923 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 672 . . . . 5 𝐵𝐶 ∈ ℝ
71, 6dpval2 29937 . . . 4 (𝐴.𝐵𝐶) = (𝐴 + (𝐵𝐶 / 10))
81nn0cni 11507 . . . . 5 𝐴 ∈ ℂ
96recni 10254 . . . . . 6 𝐵𝐶 ∈ ℂ
10 10nn0 11719 . . . . . . 7 10 ∈ ℕ0
1110nn0cni 11507 . . . . . 6 10 ∈ ℂ
12 10nn 11717 . . . . . . 7 10 ∈ ℕ
1312nnne0i 11257 . . . . . 6 10 ≠ 0
149, 11, 13divcli 10969 . . . . 5 (𝐵𝐶 / 10) ∈ ℂ
158, 14addcli 10246 . . . 4 (𝐴 + (𝐵𝐶 / 10)) ∈ ℂ
167, 15eqeltri 2846 . . 3 (𝐴.𝐵𝐶) ∈ ℂ
1716, 11, 11mulassi 10251 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = ((𝐴.𝐵𝐶) · (10 · 10))
181, 2, 4dfdec100 29912 . . 3 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)
1911, 8, 11mul32i 10434 . . . . 5 ((10 · 𝐴) · 10) = ((10 · 10) · 𝐴)
2010dec0u 11723 . . . . . 6 (10 · 10) = 100
2120oveq1i 6802 . . . . 5 ((10 · 10) · 𝐴) = (100 · 𝐴)
2219, 21eqtri 2793 . . . 4 ((10 · 𝐴) · 10) = (100 · 𝐴)
232, 4dpval3 29938 . . . . . 6 (𝐵.𝐶) = 𝐵𝐶
2423oveq1i 6802 . . . . 5 ((𝐵.𝐶) · 10) = (𝐵𝐶 · 10)
252, 4dpmul10 29939 . . . . 5 ((𝐵.𝐶) · 10) = 𝐵𝐶
2624, 25eqtr3i 2795 . . . 4 (𝐵𝐶 · 10) = 𝐵𝐶
2722, 26oveq12i 6804 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = ((100 · 𝐴) + 𝐵𝐶)
281, 6dpmul10 29939 . . . . . 6 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
29 dfdec10 11700 . . . . . 6 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
3028, 29eqtri 2793 . . . . 5 ((𝐴.𝐵𝐶) · 10) = ((10 · 𝐴) + 𝐵𝐶)
3130oveq1i 6802 . . . 4 (((𝐴.𝐵𝐶) · 10) · 10) = (((10 · 𝐴) + 𝐵𝐶) · 10)
3211, 8mulcli 10247 . . . . 5 (10 · 𝐴) ∈ ℂ
3332, 9, 11adddiri 10253 . . . 4 (((10 · 𝐴) + 𝐵𝐶) · 10) = (((10 · 𝐴) · 10) + (𝐵𝐶 · 10))
3431, 33eqtr2i 2794 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = (((𝐴.𝐵𝐶) · 10) · 10)
3518, 27, 343eqtr2ri 2800 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = 𝐴𝐵𝐶
3620oveq2i 6803 . 2 ((𝐴.𝐵𝐶) · (10 · 10)) = ((𝐴.𝐵𝐶) · 100)
3717, 35, 363eqtr3ri 2802 1 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  (class class class)co 6792  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   / cdiv 10886  0cn0 11495  cdc 11696  cdp2 29913  .cdp 29931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11496  df-dec 11697  df-dp2 29914  df-dp 29932
This theorem is referenced by:  dpmul1000  29943  dpadd3  29956  dpmul  29957  dpmul4  29958
  Copyright terms: Public domain W3C validator