Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul100 Structured version   Visualization version   GIF version

Theorem dpmul100 30891
Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dpmul100 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶

Proof of Theorem dpmul100
StepHypRef Expression
1 dp3mul10.a . . . . 5 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . . . 7 𝐵 ∈ ℕ0
32nn0rei 12101 . . . . . 6 𝐵 ∈ ℝ
4 dp3mul10.c . . . . . 6 𝐶 ∈ ℝ
5 dp2cl 30874 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 692 . . . . 5 𝐵𝐶 ∈ ℝ
71, 6dpval2 30887 . . . 4 (𝐴.𝐵𝐶) = (𝐴 + (𝐵𝐶 / 10))
81nn0cni 12102 . . . . 5 𝐴 ∈ ℂ
96recni 10847 . . . . . 6 𝐵𝐶 ∈ ℂ
10 10nn0 12311 . . . . . . 7 10 ∈ ℕ0
1110nn0cni 12102 . . . . . 6 10 ∈ ℂ
12 10nn 12309 . . . . . . 7 10 ∈ ℕ
1312nnne0i 11870 . . . . . 6 10 ≠ 0
149, 11, 13divcli 11574 . . . . 5 (𝐵𝐶 / 10) ∈ ℂ
158, 14addcli 10839 . . . 4 (𝐴 + (𝐵𝐶 / 10)) ∈ ℂ
167, 15eqeltri 2834 . . 3 (𝐴.𝐵𝐶) ∈ ℂ
1716, 11, 11mulassi 10844 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = ((𝐴.𝐵𝐶) · (10 · 10))
181, 2, 4dfdec100 30864 . . 3 𝐴𝐵𝐶 = ((100 · 𝐴) + 𝐵𝐶)
1911, 8, 11mul32i 11028 . . . . 5 ((10 · 𝐴) · 10) = ((10 · 10) · 𝐴)
2010dec0u 12314 . . . . . 6 (10 · 10) = 100
2120oveq1i 7223 . . . . 5 ((10 · 10) · 𝐴) = (100 · 𝐴)
2219, 21eqtri 2765 . . . 4 ((10 · 𝐴) · 10) = (100 · 𝐴)
232, 4dpval3 30888 . . . . . 6 (𝐵.𝐶) = 𝐵𝐶
2423oveq1i 7223 . . . . 5 ((𝐵.𝐶) · 10) = (𝐵𝐶 · 10)
252, 4dpmul10 30889 . . . . 5 ((𝐵.𝐶) · 10) = 𝐵𝐶
2624, 25eqtr3i 2767 . . . 4 (𝐵𝐶 · 10) = 𝐵𝐶
2722, 26oveq12i 7225 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = ((100 · 𝐴) + 𝐵𝐶)
281, 6dpmul10 30889 . . . . . 6 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
29 dfdec10 12296 . . . . . 6 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
3028, 29eqtri 2765 . . . . 5 ((𝐴.𝐵𝐶) · 10) = ((10 · 𝐴) + 𝐵𝐶)
3130oveq1i 7223 . . . 4 (((𝐴.𝐵𝐶) · 10) · 10) = (((10 · 𝐴) + 𝐵𝐶) · 10)
3211, 8mulcli 10840 . . . . 5 (10 · 𝐴) ∈ ℂ
3332, 9, 11adddiri 10846 . . . 4 (((10 · 𝐴) + 𝐵𝐶) · 10) = (((10 · 𝐴) · 10) + (𝐵𝐶 · 10))
3431, 33eqtr2i 2766 . . 3 (((10 · 𝐴) · 10) + (𝐵𝐶 · 10)) = (((𝐴.𝐵𝐶) · 10) · 10)
3518, 27, 343eqtr2ri 2772 . 2 (((𝐴.𝐵𝐶) · 10) · 10) = 𝐴𝐵𝐶
3620oveq2i 7224 . 2 ((𝐴.𝐵𝐶) · (10 · 10)) = ((𝐴.𝐵𝐶) · 100)
3717, 35, 363eqtr3ri 2774 1 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   / cdiv 11489  0cn0 12090  cdc 12293  cdp2 30865  .cdp 30882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-dec 12294  df-dp2 30866  df-dp 30883
This theorem is referenced by:  dpmul1000  30893  dpadd3  30906  dpmul  30907  dpmul4  30908
  Copyright terms: Public domain W3C validator