| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul100 | Structured version Visualization version GIF version | ||
| Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
| dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
| dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| dpmul100 | ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dp3mul10.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dp3mul10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12460 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 4 | dp3mul10.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
| 5 | dp2cl 32807 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ _𝐵𝐶 ∈ ℝ |
| 7 | 1, 6 | dpval2 32820 | . . . 4 ⊢ (𝐴._𝐵𝐶) = (𝐴 + (_𝐵𝐶 / ;10)) |
| 8 | 1 | nn0cni 12461 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 9 | 6 | recni 11195 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℂ |
| 10 | 10nn0 12674 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
| 11 | 10 | nn0cni 12461 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 12 | 10nn 12672 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
| 13 | 12 | nnne0i 12233 | . . . . . 6 ⊢ ;10 ≠ 0 |
| 14 | 9, 11, 13 | divcli 11931 | . . . . 5 ⊢ (_𝐵𝐶 / ;10) ∈ ℂ |
| 15 | 8, 14 | addcli 11187 | . . . 4 ⊢ (𝐴 + (_𝐵𝐶 / ;10)) ∈ ℂ |
| 16 | 7, 15 | eqeltri 2825 | . . 3 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
| 17 | 16, 11, 11 | mulassi 11192 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ((𝐴._𝐵𝐶) · (;10 · ;10)) |
| 18 | 1, 2, 4 | dfdec100 32762 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
| 19 | 11, 8, 11 | mul32i 11377 | . . . . 5 ⊢ ((;10 · 𝐴) · ;10) = ((;10 · ;10) · 𝐴) |
| 20 | 10 | dec0u 12677 | . . . . . 6 ⊢ (;10 · ;10) = ;;100 |
| 21 | 20 | oveq1i 7400 | . . . . 5 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
| 22 | 19, 21 | eqtri 2753 | . . . 4 ⊢ ((;10 · 𝐴) · ;10) = (;;100 · 𝐴) |
| 23 | 2, 4 | dpval3 32821 | . . . . . 6 ⊢ (𝐵.𝐶) = _𝐵𝐶 |
| 24 | 23 | oveq1i 7400 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = (_𝐵𝐶 · ;10) |
| 25 | 2, 4 | dpmul10 32822 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = ;𝐵𝐶 |
| 26 | 24, 25 | eqtr3i 2755 | . . . 4 ⊢ (_𝐵𝐶 · ;10) = ;𝐵𝐶 |
| 27 | 22, 26 | oveq12i 7402 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = ((;;100 · 𝐴) + ;𝐵𝐶) |
| 28 | 1, 6 | dpmul10 32822 | . . . . . 6 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
| 29 | dfdec10 12659 | . . . . . 6 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
| 30 | 28, 29 | eqtri 2753 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;10) = ((;10 · 𝐴) + _𝐵𝐶) |
| 31 | 30 | oveq1i 7400 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = (((;10 · 𝐴) + _𝐵𝐶) · ;10) |
| 32 | 11, 8 | mulcli 11188 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
| 33 | 32, 9, 11 | adddiri 11194 | . . . 4 ⊢ (((;10 · 𝐴) + _𝐵𝐶) · ;10) = (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) |
| 34 | 31, 33 | eqtr2i 2754 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = (((𝐴._𝐵𝐶) · ;10) · ;10) |
| 35 | 18, 27, 34 | 3eqtr2ri 2760 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ;;𝐴𝐵𝐶 |
| 36 | 20 | oveq2i 7401 | . 2 ⊢ ((𝐴._𝐵𝐶) · (;10 · ;10)) = ((𝐴._𝐵𝐶) · ;;100) |
| 37 | 17, 35, 36 | 3eqtr3ri 2762 | 1 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 / cdiv 11842 ℕ0cn0 12449 ;cdc 12656 _cdp2 32798 .cdp 32815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 df-dp2 32799 df-dp 32816 |
| This theorem is referenced by: dpmul1000 32826 dpadd3 32839 dpmul 32840 dpmul4 32841 |
| Copyright terms: Public domain | W3C validator |