Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul100 | Structured version Visualization version GIF version |
Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dpmul100 | ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp3mul10.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | dp3mul10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12337 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
4 | dp3mul10.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
5 | dp2cl 31354 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 689 | . . . . 5 ⊢ _𝐵𝐶 ∈ ℝ |
7 | 1, 6 | dpval2 31367 | . . . 4 ⊢ (𝐴._𝐵𝐶) = (𝐴 + (_𝐵𝐶 / ;10)) |
8 | 1 | nn0cni 12338 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
9 | 6 | recni 11082 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℂ |
10 | 10nn0 12548 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
11 | 10 | nn0cni 12338 | . . . . . 6 ⊢ ;10 ∈ ℂ |
12 | 10nn 12546 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
13 | 12 | nnne0i 12106 | . . . . . 6 ⊢ ;10 ≠ 0 |
14 | 9, 11, 13 | divcli 11810 | . . . . 5 ⊢ (_𝐵𝐶 / ;10) ∈ ℂ |
15 | 8, 14 | addcli 11074 | . . . 4 ⊢ (𝐴 + (_𝐵𝐶 / ;10)) ∈ ℂ |
16 | 7, 15 | eqeltri 2833 | . . 3 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
17 | 16, 11, 11 | mulassi 11079 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ((𝐴._𝐵𝐶) · (;10 · ;10)) |
18 | 1, 2, 4 | dfdec100 31344 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
19 | 11, 8, 11 | mul32i 11264 | . . . . 5 ⊢ ((;10 · 𝐴) · ;10) = ((;10 · ;10) · 𝐴) |
20 | 10 | dec0u 12551 | . . . . . 6 ⊢ (;10 · ;10) = ;;100 |
21 | 20 | oveq1i 7339 | . . . . 5 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
22 | 19, 21 | eqtri 2764 | . . . 4 ⊢ ((;10 · 𝐴) · ;10) = (;;100 · 𝐴) |
23 | 2, 4 | dpval3 31368 | . . . . . 6 ⊢ (𝐵.𝐶) = _𝐵𝐶 |
24 | 23 | oveq1i 7339 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = (_𝐵𝐶 · ;10) |
25 | 2, 4 | dpmul10 31369 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = ;𝐵𝐶 |
26 | 24, 25 | eqtr3i 2766 | . . . 4 ⊢ (_𝐵𝐶 · ;10) = ;𝐵𝐶 |
27 | 22, 26 | oveq12i 7341 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = ((;;100 · 𝐴) + ;𝐵𝐶) |
28 | 1, 6 | dpmul10 31369 | . . . . . 6 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
29 | dfdec10 12533 | . . . . . 6 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
30 | 28, 29 | eqtri 2764 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;10) = ((;10 · 𝐴) + _𝐵𝐶) |
31 | 30 | oveq1i 7339 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = (((;10 · 𝐴) + _𝐵𝐶) · ;10) |
32 | 11, 8 | mulcli 11075 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
33 | 32, 9, 11 | adddiri 11081 | . . . 4 ⊢ (((;10 · 𝐴) + _𝐵𝐶) · ;10) = (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) |
34 | 31, 33 | eqtr2i 2765 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = (((𝐴._𝐵𝐶) · ;10) · ;10) |
35 | 18, 27, 34 | 3eqtr2ri 2771 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ;;𝐴𝐵𝐶 |
36 | 20 | oveq2i 7340 | . 2 ⊢ ((𝐴._𝐵𝐶) · (;10 · ;10)) = ((𝐴._𝐵𝐶) · ;;100) |
37 | 17, 35, 36 | 3eqtr3ri 2773 | 1 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℂcc 10962 ℝcr 10963 0cc0 10964 1c1 10965 + caddc 10967 · cmul 10969 / cdiv 11725 ℕ0cn0 12326 ;cdc 12530 _cdp2 31345 .cdp 31362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-dec 12531 df-dp2 31346 df-dp 31363 |
This theorem is referenced by: dpmul1000 31373 dpadd3 31386 dpmul 31387 dpmul4 31388 |
Copyright terms: Public domain | W3C validator |