![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul100 | Structured version Visualization version GIF version |
Description: Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dpmul100 | ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp3mul10.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | dp3mul10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12564 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
4 | dp3mul10.c | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
5 | dp2cl 32844 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 691 | . . . . 5 ⊢ _𝐵𝐶 ∈ ℝ |
7 | 1, 6 | dpval2 32857 | . . . 4 ⊢ (𝐴._𝐵𝐶) = (𝐴 + (_𝐵𝐶 / ;10)) |
8 | 1 | nn0cni 12565 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
9 | 6 | recni 11304 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℂ |
10 | 10nn0 12776 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
11 | 10 | nn0cni 12565 | . . . . . 6 ⊢ ;10 ∈ ℂ |
12 | 10nn 12774 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
13 | 12 | nnne0i 12333 | . . . . . 6 ⊢ ;10 ≠ 0 |
14 | 9, 11, 13 | divcli 12036 | . . . . 5 ⊢ (_𝐵𝐶 / ;10) ∈ ℂ |
15 | 8, 14 | addcli 11296 | . . . 4 ⊢ (𝐴 + (_𝐵𝐶 / ;10)) ∈ ℂ |
16 | 7, 15 | eqeltri 2840 | . . 3 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
17 | 16, 11, 11 | mulassi 11301 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ((𝐴._𝐵𝐶) · (;10 · ;10)) |
18 | 1, 2, 4 | dfdec100 32834 | . . 3 ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) |
19 | 11, 8, 11 | mul32i 11486 | . . . . 5 ⊢ ((;10 · 𝐴) · ;10) = ((;10 · ;10) · 𝐴) |
20 | 10 | dec0u 12779 | . . . . . 6 ⊢ (;10 · ;10) = ;;100 |
21 | 20 | oveq1i 7458 | . . . . 5 ⊢ ((;10 · ;10) · 𝐴) = (;;100 · 𝐴) |
22 | 19, 21 | eqtri 2768 | . . . 4 ⊢ ((;10 · 𝐴) · ;10) = (;;100 · 𝐴) |
23 | 2, 4 | dpval3 32858 | . . . . . 6 ⊢ (𝐵.𝐶) = _𝐵𝐶 |
24 | 23 | oveq1i 7458 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = (_𝐵𝐶 · ;10) |
25 | 2, 4 | dpmul10 32859 | . . . . 5 ⊢ ((𝐵.𝐶) · ;10) = ;𝐵𝐶 |
26 | 24, 25 | eqtr3i 2770 | . . . 4 ⊢ (_𝐵𝐶 · ;10) = ;𝐵𝐶 |
27 | 22, 26 | oveq12i 7460 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = ((;;100 · 𝐴) + ;𝐵𝐶) |
28 | 1, 6 | dpmul10 32859 | . . . . . 6 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
29 | dfdec10 12761 | . . . . . 6 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
30 | 28, 29 | eqtri 2768 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;10) = ((;10 · 𝐴) + _𝐵𝐶) |
31 | 30 | oveq1i 7458 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = (((;10 · 𝐴) + _𝐵𝐶) · ;10) |
32 | 11, 8 | mulcli 11297 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
33 | 32, 9, 11 | adddiri 11303 | . . . 4 ⊢ (((;10 · 𝐴) + _𝐵𝐶) · ;10) = (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) |
34 | 31, 33 | eqtr2i 2769 | . . 3 ⊢ (((;10 · 𝐴) · ;10) + (_𝐵𝐶 · ;10)) = (((𝐴._𝐵𝐶) · ;10) · ;10) |
35 | 18, 27, 34 | 3eqtr2ri 2775 | . 2 ⊢ (((𝐴._𝐵𝐶) · ;10) · ;10) = ;;𝐴𝐵𝐶 |
36 | 20 | oveq2i 7459 | . 2 ⊢ ((𝐴._𝐵𝐶) · (;10 · ;10)) = ((𝐴._𝐵𝐶) · ;;100) |
37 | 17, 35, 36 | 3eqtr3ri 2777 | 1 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 / cdiv 11947 ℕ0cn0 12553 ;cdc 12758 _cdp2 32835 .cdp 32852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-dp2 32836 df-dp 32853 |
This theorem is referenced by: dpmul1000 32863 dpadd3 32876 dpmul 32877 dpmul4 32878 |
Copyright terms: Public domain | W3C validator |