| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10128. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem13 | ⊢ (𝐹‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10119 | . . . . 5 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | peano1 7819 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | f0cli 7031 | . . . 4 ⊢ (𝐹‘∅) ∈ ω |
| 5 | nna0 8519 | . . . 4 ⊢ ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝐹‘∅) +o ∅) = (𝐹‘∅) |
| 7 | un0 4341 | . . . 4 ⊢ (∅ ∪ ∅) = ∅ | |
| 8 | 7 | fveq2i 6825 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅) |
| 9 | ackbij1lem3 10112 | . . . . 5 ⊢ (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin)) | |
| 10 | 3, 9 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ (𝒫 ω ∩ Fin) |
| 11 | in0 4342 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 12 | 1 | ackbij1lem9 10118 | . . . 4 ⊢ ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))) |
| 13 | 10, 10, 11, 12 | mp3an 1463 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)) |
| 14 | 6, 8, 13 | 3eqtr2ri 2761 | . 2 ⊢ ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) |
| 15 | nnacan 8543 | . . 3 ⊢ (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)) | |
| 16 | 4, 4, 3, 15 | mp3an 1463 | . 2 ⊢ (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ (𝐹‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 𝒫 cpw 4547 {csn 4573 ∪ ciun 4939 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ωcom 7796 +o coa 8382 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 |
| This theorem is referenced by: ackbij1lem14 10123 ackbij1 10128 |
| Copyright terms: Public domain | W3C validator |