| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10166. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem13 | ⊢ (𝐹‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10157 | . . . . 5 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | peano1 7845 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | f0cli 7052 | . . . 4 ⊢ (𝐹‘∅) ∈ ω |
| 5 | nna0 8545 | . . . 4 ⊢ ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝐹‘∅) +o ∅) = (𝐹‘∅) |
| 7 | un0 4353 | . . . 4 ⊢ (∅ ∪ ∅) = ∅ | |
| 8 | 7 | fveq2i 6843 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅) |
| 9 | ackbij1lem3 10150 | . . . . 5 ⊢ (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin)) | |
| 10 | 3, 9 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ (𝒫 ω ∩ Fin) |
| 11 | in0 4354 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 12 | 1 | ackbij1lem9 10156 | . . . 4 ⊢ ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))) |
| 13 | 10, 10, 11, 12 | mp3an 1463 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)) |
| 14 | 6, 8, 13 | 3eqtr2ri 2759 | . 2 ⊢ ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) |
| 15 | nnacan 8569 | . . 3 ⊢ (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)) | |
| 16 | 4, 4, 3, 15 | mp3an 1463 | . 2 ⊢ (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ (𝐹‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ∪ ciun 4951 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ωcom 7822 +o coa 8408 Fincfn 8895 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 |
| This theorem is referenced by: ackbij1lem14 10161 ackbij1 10166 |
| Copyright terms: Public domain | W3C validator |