Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem13 Structured version   Visualization version   GIF version

Theorem ackbij1lem13 9647
 Description: Lemma for ackbij1 9653. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem13 (𝐹‘∅) = ∅
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem13
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 9644 . . . . 5 𝐹:(𝒫 ω ∩ Fin)⟶ω
3 peano1 7585 . . . . 5 ∅ ∈ ω
42, 3f0cli 6845 . . . 4 (𝐹‘∅) ∈ ω
5 nna0 8217 . . . 4 ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅))
64, 5ax-mp 5 . . 3 ((𝐹‘∅) +o ∅) = (𝐹‘∅)
7 un0 4301 . . . 4 (∅ ∪ ∅) = ∅
87fveq2i 6652 . . 3 (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅)
9 ackbij1lem3 9637 . . . . 5 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
103, 9ax-mp 5 . . . 4 ∅ ∈ (𝒫 ω ∩ Fin)
11 in0 4302 . . . 4 (∅ ∩ ∅) = ∅
121ackbij1lem9 9643 . . . 4 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)))
1310, 10, 11, 12mp3an 1458 . . 3 (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))
146, 8, 133eqtr2ri 2831 . 2 ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅)
15 nnacan 8241 . . 3 (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅))
164, 4, 3, 15mp3an 1458 . 2 (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)
1714, 16mpbi 233 1 (𝐹‘∅) = ∅
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538   ∈ wcel 2112   ∪ cun 3882   ∩ cin 3883  ∅c0 4246  𝒫 cpw 4500  {csn 4528  ∪ ciun 4884   ↦ cmpt 5113   × cxp 5521  ‘cfv 6328  (class class class)co 7139  ωcom 7564   +o coa 8086  Fincfn 8496  cardccrd 9352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356 This theorem is referenced by:  ackbij1lem14  9648  ackbij1  9653
 Copyright terms: Public domain W3C validator