Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9978. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem13 | ⊢ (𝐹‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | 1 | ackbij1lem10 9969 | . . . . 5 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
3 | peano1 7723 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | f0cli 6968 | . . . 4 ⊢ (𝐹‘∅) ∈ ω |
5 | nna0 8411 | . . . 4 ⊢ ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝐹‘∅) +o ∅) = (𝐹‘∅) |
7 | un0 4329 | . . . 4 ⊢ (∅ ∪ ∅) = ∅ | |
8 | 7 | fveq2i 6771 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅) |
9 | ackbij1lem3 9962 | . . . . 5 ⊢ (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin)) | |
10 | 3, 9 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ (𝒫 ω ∩ Fin) |
11 | in0 4330 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
12 | 1 | ackbij1lem9 9968 | . . . 4 ⊢ ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))) |
13 | 10, 10, 11, 12 | mp3an 1459 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)) |
14 | 6, 8, 13 | 3eqtr2ri 2774 | . 2 ⊢ ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) |
15 | nnacan 8435 | . . 3 ⊢ (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)) | |
16 | 4, 4, 3, 15 | mp3an 1459 | . 2 ⊢ (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅) |
17 | 14, 16 | mpbi 229 | 1 ⊢ (𝐹‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 ∩ cin 3890 ∅c0 4261 𝒫 cpw 4538 {csn 4566 ∪ ciun 4929 ↦ cmpt 5161 × cxp 5586 ‘cfv 6430 (class class class)co 7268 ωcom 7700 +o coa 8278 Fincfn 8707 cardccrd 9677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 |
This theorem is referenced by: ackbij1lem14 9973 ackbij1 9978 |
Copyright terms: Public domain | W3C validator |