![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10247. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) |
Ref | Expression |
---|---|
ackbij1lem13 | β’ (πΉββ ) = β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . . . . 6 β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) | |
2 | 1 | ackbij1lem10 10238 | . . . . 5 β’ πΉ:(π« Ο β© Fin)βΆΟ |
3 | peano1 7886 | . . . . 5 β’ β β Ο | |
4 | 2, 3 | f0cli 7102 | . . . 4 β’ (πΉββ ) β Ο |
5 | nna0 8616 | . . . 4 β’ ((πΉββ ) β Ο β ((πΉββ ) +o β ) = (πΉββ )) | |
6 | 4, 5 | ax-mp 5 | . . 3 β’ ((πΉββ ) +o β ) = (πΉββ ) |
7 | un0 4386 | . . . 4 β’ (β βͺ β ) = β | |
8 | 7 | fveq2i 6894 | . . 3 β’ (πΉβ(β βͺ β )) = (πΉββ ) |
9 | ackbij1lem3 10231 | . . . . 5 β’ (β β Ο β β β (π« Ο β© Fin)) | |
10 | 3, 9 | ax-mp 5 | . . . 4 β’ β β (π« Ο β© Fin) |
11 | in0 4387 | . . . 4 β’ (β β© β ) = β | |
12 | 1 | ackbij1lem9 10237 | . . . 4 β’ ((β β (π« Ο β© Fin) β§ β β (π« Ο β© Fin) β§ (β β© β ) = β ) β (πΉβ(β βͺ β )) = ((πΉββ ) +o (πΉββ ))) |
13 | 10, 10, 11, 12 | mp3an 1458 | . . 3 β’ (πΉβ(β βͺ β )) = ((πΉββ ) +o (πΉββ )) |
14 | 6, 8, 13 | 3eqtr2ri 2762 | . 2 β’ ((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) |
15 | nnacan 8640 | . . 3 β’ (((πΉββ ) β Ο β§ (πΉββ ) β Ο β§ β β Ο) β (((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) β (πΉββ ) = β )) | |
16 | 4, 4, 3, 15 | mp3an 1458 | . 2 β’ (((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) β (πΉββ ) = β ) |
17 | 14, 16 | mpbi 229 | 1 β’ (πΉββ ) = β |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1534 β wcel 2099 βͺ cun 3942 β© cin 3943 β c0 4318 π« cpw 4598 {csn 4624 βͺ ciun 4991 β¦ cmpt 5225 Γ cxp 5670 βcfv 6542 (class class class)co 7414 Οcom 7862 +o coa 8475 Fincfn 8953 cardccrd 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 |
This theorem is referenced by: ackbij1lem14 10242 ackbij1 10247 |
Copyright terms: Public domain | W3C validator |