| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10197. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem13 | ⊢ (𝐹‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10188 | . . . . 5 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | peano1 7868 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | f0cli 7073 | . . . 4 ⊢ (𝐹‘∅) ∈ ω |
| 5 | nna0 8571 | . . . 4 ⊢ ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝐹‘∅) +o ∅) = (𝐹‘∅) |
| 7 | un0 4360 | . . . 4 ⊢ (∅ ∪ ∅) = ∅ | |
| 8 | 7 | fveq2i 6864 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅) |
| 9 | ackbij1lem3 10181 | . . . . 5 ⊢ (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin)) | |
| 10 | 3, 9 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ (𝒫 ω ∩ Fin) |
| 11 | in0 4361 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 12 | 1 | ackbij1lem9 10187 | . . . 4 ⊢ ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))) |
| 13 | 10, 10, 11, 12 | mp3an 1463 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)) |
| 14 | 6, 8, 13 | 3eqtr2ri 2760 | . 2 ⊢ ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) |
| 15 | nnacan 8595 | . . 3 ⊢ (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)) | |
| 16 | 4, 4, 3, 15 | mp3an 1463 | . 2 ⊢ (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ (𝐹‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ ciun 4958 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ωcom 7845 +o coa 8434 Fincfn 8921 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 |
| This theorem is referenced by: ackbij1lem14 10192 ackbij1 10197 |
| Copyright terms: Public domain | W3C validator |