MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem13 Structured version   Visualization version   GIF version

Theorem ackbij1lem13 10250
Description: Lemma for ackbij1 10256. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem13 (𝐹‘∅) = ∅
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem13
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 10247 . . . . 5 𝐹:(𝒫 ω ∩ Fin)⟶ω
3 peano1 7889 . . . . 5 ∅ ∈ ω
42, 3f0cli 7093 . . . 4 (𝐹‘∅) ∈ ω
5 nna0 8621 . . . 4 ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅))
64, 5ax-mp 5 . . 3 ((𝐹‘∅) +o ∅) = (𝐹‘∅)
7 un0 4374 . . . 4 (∅ ∪ ∅) = ∅
87fveq2i 6884 . . 3 (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅)
9 ackbij1lem3 10240 . . . . 5 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
103, 9ax-mp 5 . . . 4 ∅ ∈ (𝒫 ω ∩ Fin)
11 in0 4375 . . . 4 (∅ ∩ ∅) = ∅
121ackbij1lem9 10246 . . . 4 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)))
1310, 10, 11, 12mp3an 1463 . . 3 (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))
146, 8, 133eqtr2ri 2766 . 2 ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅)
15 nnacan 8645 . . 3 (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅))
164, 4, 3, 15mp3an 1463 . 2 (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)
1714, 16mpbi 230 1 (𝐹‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cun 3929  cin 3930  c0 4313  𝒫 cpw 4580  {csn 4606   ciun 4972  cmpt 5206   × cxp 5657  cfv 6536  (class class class)co 7410  ωcom 7866   +o coa 8482  Fincfn 8964  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958
This theorem is referenced by:  ackbij1lem14  10251  ackbij1  10256
  Copyright terms: Public domain W3C validator