| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10131. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem13 | ⊢ (𝐹‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10122 | . . . . 5 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | peano1 7822 | . . . . 5 ⊢ ∅ ∈ ω | |
| 4 | 2, 3 | f0cli 7032 | . . . 4 ⊢ (𝐹‘∅) ∈ ω |
| 5 | nna0 8522 | . . . 4 ⊢ ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝐹‘∅) +o ∅) = (𝐹‘∅) |
| 7 | un0 4345 | . . . 4 ⊢ (∅ ∪ ∅) = ∅ | |
| 8 | 7 | fveq2i 6825 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅) |
| 9 | ackbij1lem3 10115 | . . . . 5 ⊢ (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin)) | |
| 10 | 3, 9 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ (𝒫 ω ∩ Fin) |
| 11 | in0 4346 | . . . 4 ⊢ (∅ ∩ ∅) = ∅ | |
| 12 | 1 | ackbij1lem9 10121 | . . . 4 ⊢ ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))) |
| 13 | 10, 10, 11, 12 | mp3an 1463 | . . 3 ⊢ (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)) |
| 14 | 6, 8, 13 | 3eqtr2ri 2759 | . 2 ⊢ ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) |
| 15 | nnacan 8546 | . . 3 ⊢ (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)) | |
| 16 | 4, 4, 3, 15 | mp3an 1463 | . 2 ⊢ (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅) |
| 17 | 14, 16 | mpbi 230 | 1 ⊢ (𝐹‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ∩ cin 3902 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∪ ciun 4941 ↦ cmpt 5173 × cxp 5617 ‘cfv 6482 (class class class)co 7349 ωcom 7799 +o coa 8385 Fincfn 8872 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 |
| This theorem is referenced by: ackbij1lem14 10126 ackbij1 10131 |
| Copyright terms: Public domain | W3C validator |