MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem13 Structured version   Visualization version   GIF version

Theorem ackbij1lem13 10125
Description: Lemma for ackbij1 10131. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem13 (𝐹‘∅) = ∅
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem13
StepHypRef Expression
1 ackbij.f . . . . . 6 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 10122 . . . . 5 𝐹:(𝒫 ω ∩ Fin)⟶ω
3 peano1 7822 . . . . 5 ∅ ∈ ω
42, 3f0cli 7032 . . . 4 (𝐹‘∅) ∈ ω
5 nna0 8522 . . . 4 ((𝐹‘∅) ∈ ω → ((𝐹‘∅) +o ∅) = (𝐹‘∅))
64, 5ax-mp 5 . . 3 ((𝐹‘∅) +o ∅) = (𝐹‘∅)
7 un0 4345 . . . 4 (∅ ∪ ∅) = ∅
87fveq2i 6825 . . 3 (𝐹‘(∅ ∪ ∅)) = (𝐹‘∅)
9 ackbij1lem3 10115 . . . . 5 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
103, 9ax-mp 5 . . . 4 ∅ ∈ (𝒫 ω ∩ Fin)
11 in0 4346 . . . 4 (∅ ∩ ∅) = ∅
121ackbij1lem9 10121 . . . 4 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ ∅ ∈ (𝒫 ω ∩ Fin) ∧ (∅ ∩ ∅) = ∅) → (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅)))
1310, 10, 11, 12mp3an 1463 . . 3 (𝐹‘(∅ ∪ ∅)) = ((𝐹‘∅) +o (𝐹‘∅))
146, 8, 133eqtr2ri 2759 . 2 ((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅)
15 nnacan 8546 . . 3 (((𝐹‘∅) ∈ ω ∧ (𝐹‘∅) ∈ ω ∧ ∅ ∈ ω) → (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅))
164, 4, 3, 15mp3an 1463 . 2 (((𝐹‘∅) +o (𝐹‘∅)) = ((𝐹‘∅) +o ∅) ↔ (𝐹‘∅) = ∅)
1714, 16mpbi 230 1 (𝐹‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cun 3901  cin 3902  c0 4284  𝒫 cpw 4551  {csn 4577   ciun 4941  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  ωcom 7799   +o coa 8385  Fincfn 8872  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835
This theorem is referenced by:  ackbij1lem14  10126  ackbij1  10131
  Copyright terms: Public domain W3C validator