![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem13 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10256. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) |
Ref | Expression |
---|---|
ackbij1lem13 | β’ (πΉββ ) = β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . . . . 6 β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) | |
2 | 1 | ackbij1lem10 10247 | . . . . 5 β’ πΉ:(π« Ο β© Fin)βΆΟ |
3 | peano1 7889 | . . . . 5 β’ β β Ο | |
4 | 2, 3 | f0cli 7101 | . . . 4 β’ (πΉββ ) β Ο |
5 | nna0 8618 | . . . 4 β’ ((πΉββ ) β Ο β ((πΉββ ) +o β ) = (πΉββ )) | |
6 | 4, 5 | ax-mp 5 | . . 3 β’ ((πΉββ ) +o β ) = (πΉββ ) |
7 | un0 4387 | . . . 4 β’ (β βͺ β ) = β | |
8 | 7 | fveq2i 6893 | . . 3 β’ (πΉβ(β βͺ β )) = (πΉββ ) |
9 | ackbij1lem3 10240 | . . . . 5 β’ (β β Ο β β β (π« Ο β© Fin)) | |
10 | 3, 9 | ax-mp 5 | . . . 4 β’ β β (π« Ο β© Fin) |
11 | in0 4388 | . . . 4 β’ (β β© β ) = β | |
12 | 1 | ackbij1lem9 10246 | . . . 4 β’ ((β β (π« Ο β© Fin) β§ β β (π« Ο β© Fin) β§ (β β© β ) = β ) β (πΉβ(β βͺ β )) = ((πΉββ ) +o (πΉββ ))) |
13 | 10, 10, 11, 12 | mp3an 1457 | . . 3 β’ (πΉβ(β βͺ β )) = ((πΉββ ) +o (πΉββ )) |
14 | 6, 8, 13 | 3eqtr2ri 2760 | . 2 β’ ((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) |
15 | nnacan 8642 | . . 3 β’ (((πΉββ ) β Ο β§ (πΉββ ) β Ο β§ β β Ο) β (((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) β (πΉββ ) = β )) | |
16 | 4, 4, 3, 15 | mp3an 1457 | . 2 β’ (((πΉββ ) +o (πΉββ )) = ((πΉββ ) +o β ) β (πΉββ ) = β ) |
17 | 14, 16 | mpbi 229 | 1 β’ (πΉββ ) = β |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1533 β wcel 2098 βͺ cun 3939 β© cin 3940 β c0 4319 π« cpw 4599 {csn 4625 βͺ ciun 4992 β¦ cmpt 5227 Γ cxp 5671 βcfv 6543 (class class class)co 7413 Οcom 7865 +o coa 8477 Fincfn 8957 cardccrd 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 |
This theorem is referenced by: ackbij1lem14 10251 ackbij1 10256 |
Copyright terms: Public domain | W3C validator |