Proof of Theorem divalglem2
Step | Hyp | Ref
| Expression |
1 | | divalglem2.4 |
. . . 4
⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
2 | 1 | ssrab3 4015 |
. . 3
⊢ 𝑆 ⊆
ℕ0 |
3 | | nn0uz 12620 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | sseqtri 3957 |
. 2
⊢ 𝑆 ⊆
(ℤ≥‘0) |
5 | | divalglem0.1 |
. . . . . 6
⊢ 𝑁 ∈ ℤ |
6 | | divalglem0.2 |
. . . . . . . . 9
⊢ 𝐷 ∈ ℤ |
7 | | zmulcl 12369 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ) |
8 | 5, 6, 7 | mp2an 689 |
. . . . . . . 8
⊢ (𝑁 · 𝐷) ∈ ℤ |
9 | | nn0abscl 15024 |
. . . . . . . 8
⊢ ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈
ℕ0) |
10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢
(abs‘(𝑁
· 𝐷)) ∈
ℕ0 |
11 | 10 | nn0zi 12345 |
. . . . . 6
⊢
(abs‘(𝑁
· 𝐷)) ∈
ℤ |
12 | | zaddcl 12360 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧
(abs‘(𝑁 ·
𝐷)) ∈ ℤ) →
(𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ) |
13 | 5, 11, 12 | mp2an 689 |
. . . . 5
⊢ (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ |
14 | | divalglem1.3 |
. . . . . 6
⊢ 𝐷 ≠ 0 |
15 | 5, 6, 14 | divalglem1 16103 |
. . . . 5
⊢ 0 ≤
(𝑁 + (abs‘(𝑁 · 𝐷))) |
16 | | elnn0z 12332 |
. . . . 5
⊢ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔
((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))) |
17 | 13, 15, 16 | mpbir2an 708 |
. . . 4
⊢ (𝑁 + (abs‘(𝑁 · 𝐷))) ∈
ℕ0 |
18 | | iddvds 15979 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) |
19 | | dvdsabsb 15985 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
20 | 19 | anidms 567 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
21 | 18, 20 | mpbid 231 |
. . . . . . 7
⊢ (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷)) |
22 | 6, 21 | ax-mp 5 |
. . . . . 6
⊢ 𝐷 ∥ (abs‘𝐷) |
23 | | nn0abscl 15024 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
24 | 5, 23 | ax-mp 5 |
. . . . . . . 8
⊢
(abs‘𝑁) ∈
ℕ0 |
25 | 24 | nn0negzi 12359 |
. . . . . . 7
⊢
-(abs‘𝑁)
∈ ℤ |
26 | | nn0abscl 15024 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℤ →
(abs‘𝐷) ∈
ℕ0) |
27 | 6, 26 | ax-mp 5 |
. . . . . . . 8
⊢
(abs‘𝐷) ∈
ℕ0 |
28 | 27 | nn0zi 12345 |
. . . . . . 7
⊢
(abs‘𝐷) ∈
ℤ |
29 | | dvdsmultr2 16007 |
. . . . . . 7
⊢ ((𝐷 ∈ ℤ ∧
-(abs‘𝑁) ∈
ℤ ∧ (abs‘𝐷)
∈ ℤ) → (𝐷
∥ (abs‘𝐷)
→ 𝐷 ∥
(-(abs‘𝑁) ·
(abs‘𝐷)))) |
30 | 6, 25, 28, 29 | mp3an 1460 |
. . . . . 6
⊢ (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))) |
31 | 22, 30 | ax-mp 5 |
. . . . 5
⊢ 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)) |
32 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
33 | 5, 32 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑁 ∈ ℂ |
34 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℤ → 𝐷 ∈
ℂ) |
35 | 6, 34 | ax-mp 5 |
. . . . . . . 8
⊢ 𝐷 ∈ ℂ |
36 | 33, 35 | absmuli 15116 |
. . . . . . 7
⊢
(abs‘(𝑁
· 𝐷)) =
((abs‘𝑁) ·
(abs‘𝐷)) |
37 | 36 | negeqi 11214 |
. . . . . 6
⊢
-(abs‘(𝑁
· 𝐷)) =
-((abs‘𝑁) ·
(abs‘𝐷)) |
38 | | df-neg 11208 |
. . . . . . 7
⊢
-(abs‘(𝑁
· 𝐷)) = (0 −
(abs‘(𝑁 ·
𝐷))) |
39 | 33 | subidi 11292 |
. . . . . . . 8
⊢ (𝑁 − 𝑁) = 0 |
40 | 39 | oveq1i 7285 |
. . . . . . 7
⊢ ((𝑁 − 𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷))) |
41 | 10 | nn0cni 12245 |
. . . . . . . 8
⊢
(abs‘(𝑁
· 𝐷)) ∈
ℂ |
42 | | subsub4 11254 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧
(abs‘(𝑁 ·
𝐷)) ∈ ℂ) →
((𝑁 − 𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))) |
43 | 33, 33, 41, 42 | mp3an 1460 |
. . . . . . 7
⊢ ((𝑁 − 𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) |
44 | 38, 40, 43 | 3eqtr2ri 2773 |
. . . . . 6
⊢ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷)) |
45 | 33 | abscli 15107 |
. . . . . . . 8
⊢
(abs‘𝑁) ∈
ℝ |
46 | 45 | recni 10989 |
. . . . . . 7
⊢
(abs‘𝑁) ∈
ℂ |
47 | 35 | abscli 15107 |
. . . . . . . 8
⊢
(abs‘𝐷) ∈
ℝ |
48 | 47 | recni 10989 |
. . . . . . 7
⊢
(abs‘𝐷) ∈
ℂ |
49 | 46, 48 | mulneg1i 11421 |
. . . . . 6
⊢
(-(abs‘𝑁)
· (abs‘𝐷)) =
-((abs‘𝑁) ·
(abs‘𝐷)) |
50 | 37, 44, 49 | 3eqtr4i 2776 |
. . . . 5
⊢ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷)) |
51 | 31, 50 | breqtrri 5101 |
. . . 4
⊢ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) |
52 | | oveq2 7283 |
. . . . . 6
⊢ (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁 − 𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))) |
53 | 52 | breq2d 5086 |
. . . . 5
⊢ (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))) |
54 | 53, 1 | elrab2 3627 |
. . . 4
⊢ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))) |
55 | 17, 51, 54 | mpbir2an 708 |
. . 3
⊢ (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 |
56 | 55 | ne0ii 4271 |
. 2
⊢ 𝑆 ≠ ∅ |
57 | | infssuzcl 12672 |
. 2
⊢ ((𝑆 ⊆
(ℤ≥‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) |
58 | 4, 56, 57 | mp2an 689 |
1
⊢ inf(𝑆, ℝ, < ) ∈ 𝑆 |