MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 16419
Description: Lemma for divalg 16427. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4062 . . 3 𝑆 ⊆ ℕ0
3 nn0uz 12899 . . 3 0 = (ℤ‘0)
42, 3sseqtri 4012 . 2 𝑆 ⊆ (ℤ‘0)
5 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
6 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
7 zmulcl 12646 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
85, 6, 7mp2an 692 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
9 nn0abscl 15336 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
108, 9ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1110nn0zi 12622 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
12 zaddcl 12637 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
135, 11, 12mp2an 692 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
14 divalglem1.3 . . . . . 6 𝐷 ≠ 0
155, 6, 14divalglem1 16418 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
16 elnn0z 12606 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1713, 15, 16mpbir2an 711 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
18 iddvds 16294 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
19 dvdsabsb 16300 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2019anidms 566 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2118, 20mpbid 232 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
226, 21ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
23 nn0abscl 15336 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
245, 23ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2524nn0negzi 12636 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
26 nn0abscl 15336 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
276, 26ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2827nn0zi 12622 . . . . . . 7 (abs‘𝐷) ∈ ℤ
29 dvdsmultr2 16322 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
306, 25, 28, 29mp3an 1463 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3122, 30ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
32 zcn 12598 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
335, 32ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
34 zcn 12598 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
356, 34ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3633, 35absmuli 15428 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3736negeqi 11480 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
38 df-neg 11474 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
3933subidi 11559 . . . . . . . 8 (𝑁𝑁) = 0
4039oveq1i 7420 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4110nn0cni 12518 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
42 subsub4 11521 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4333, 33, 41, 42mp3an 1463 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4438, 40, 433eqtr2ri 2766 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4533abscli 15419 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4645recni 11254 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4735abscli 15419 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4847recni 11254 . . . . . . 7 (abs‘𝐷) ∈ ℂ
4946, 48mulneg1i 11688 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5037, 44, 493eqtr4i 2769 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5131, 50breqtrri 5151 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
52 oveq2 7418 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5352breq2d 5136 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5453, 1elrab2 3679 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5517, 51, 54mpbir2an 711 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5655ne0ii 4324 . 2 𝑆 ≠ ∅
57 infssuzcl 12953 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
584, 56, 57mp2an 692 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2933  {crab 3420  wss 3931  c0 4313   class class class wbr 5124  cfv 6536  (class class class)co 7410  infcinf 9458  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472  0cn0 12506  cz 12593  cuz 12857  abscabs 15258  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278
This theorem is referenced by:  divalglem5  16421  divalglem9  16425
  Copyright terms: Public domain W3C validator