MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 16306
Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4033 . . 3 𝑆 ⊆ ℕ0
3 nn0uz 12777 . . 3 0 = (ℤ‘0)
42, 3sseqtri 3984 . 2 𝑆 ⊆ (ℤ‘0)
5 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
6 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
7 zmulcl 12524 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
85, 6, 7mp2an 692 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
9 nn0abscl 15219 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
108, 9ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1110nn0zi 12500 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
12 zaddcl 12515 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
135, 11, 12mp2an 692 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
14 divalglem1.3 . . . . . 6 𝐷 ≠ 0
155, 6, 14divalglem1 16305 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
16 elnn0z 12484 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1713, 15, 16mpbir2an 711 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
18 iddvds 16180 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
19 dvdsabsb 16186 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2019anidms 566 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2118, 20mpbid 232 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
226, 21ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
23 nn0abscl 15219 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
245, 23ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2524nn0negzi 12514 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
26 nn0abscl 15219 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
276, 26ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2827nn0zi 12500 . . . . . . 7 (abs‘𝐷) ∈ ℤ
29 dvdsmultr2 16209 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
306, 25, 28, 29mp3an 1463 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3122, 30ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
32 zcn 12476 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
335, 32ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
34 zcn 12476 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
356, 34ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3633, 35absmuli 15312 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3736negeqi 11356 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
38 df-neg 11350 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
3933subidi 11435 . . . . . . . 8 (𝑁𝑁) = 0
4039oveq1i 7359 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4110nn0cni 12396 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
42 subsub4 11397 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4333, 33, 41, 42mp3an 1463 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4438, 40, 433eqtr2ri 2759 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4533abscli 15303 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4645recni 11129 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4735abscli 15303 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4847recni 11129 . . . . . . 7 (abs‘𝐷) ∈ ℂ
4946, 48mulneg1i 11566 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5037, 44, 493eqtr4i 2762 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5131, 50breqtrri 5119 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
52 oveq2 7357 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5352breq2d 5104 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5453, 1elrab2 3651 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5517, 51, 54mpbir2an 711 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5655ne0ii 4295 . 2 𝑆 ≠ ∅
57 infssuzcl 12833 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
584, 56, 57mp2an 692 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  {crab 3394  wss 3903  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  infcinf 9331  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348  0cn0 12384  cz 12471  cuz 12735  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  divalglem5  16308  divalglem9  16312
  Copyright terms: Public domain W3C validator