MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 16428
Description: Lemma for divalg 16436. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4091 . . 3 𝑆 ⊆ ℕ0
3 nn0uz 12917 . . 3 0 = (ℤ‘0)
42, 3sseqtri 4031 . 2 𝑆 ⊆ (ℤ‘0)
5 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
6 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
7 zmulcl 12663 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
85, 6, 7mp2an 692 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
9 nn0abscl 15347 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
108, 9ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1110nn0zi 12639 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
12 zaddcl 12654 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
135, 11, 12mp2an 692 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
14 divalglem1.3 . . . . . 6 𝐷 ≠ 0
155, 6, 14divalglem1 16427 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
16 elnn0z 12623 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1713, 15, 16mpbir2an 711 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
18 iddvds 16303 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
19 dvdsabsb 16309 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2019anidms 566 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2118, 20mpbid 232 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
226, 21ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
23 nn0abscl 15347 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
245, 23ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2524nn0negzi 12653 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
26 nn0abscl 15347 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
276, 26ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2827nn0zi 12639 . . . . . . 7 (abs‘𝐷) ∈ ℤ
29 dvdsmultr2 16331 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
306, 25, 28, 29mp3an 1460 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3122, 30ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
32 zcn 12615 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
335, 32ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
34 zcn 12615 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
356, 34ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3633, 35absmuli 15439 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3736negeqi 11498 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
38 df-neg 11492 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
3933subidi 11577 . . . . . . . 8 (𝑁𝑁) = 0
4039oveq1i 7440 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4110nn0cni 12535 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
42 subsub4 11539 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4333, 33, 41, 42mp3an 1460 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4438, 40, 433eqtr2ri 2769 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4533abscli 15430 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4645recni 11272 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4735abscli 15430 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4847recni 11272 . . . . . . 7 (abs‘𝐷) ∈ ℂ
4946, 48mulneg1i 11706 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5037, 44, 493eqtr4i 2772 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5131, 50breqtrri 5174 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
52 oveq2 7438 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5352breq2d 5159 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5453, 1elrab2 3697 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5517, 51, 54mpbir2an 711 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5655ne0ii 4349 . 2 𝑆 ≠ ∅
57 infssuzcl 12971 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
584, 56, 57mp2an 692 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  wne 2937  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  (class class class)co 7430  infcinf 9478  cc 11150  cr 11151  0cc0 11152   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490  0cn0 12523  cz 12610  cuz 12875  abscabs 15269  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  divalglem5  16430  divalglem9  16434
  Copyright terms: Public domain W3C validator