MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 16365
Description: Lemma for divalg 16373. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4045 . . 3 𝑆 ⊆ ℕ0
3 nn0uz 12835 . . 3 0 = (ℤ‘0)
42, 3sseqtri 3995 . 2 𝑆 ⊆ (ℤ‘0)
5 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
6 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
7 zmulcl 12582 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
85, 6, 7mp2an 692 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
9 nn0abscl 15278 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
108, 9ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1110nn0zi 12558 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
12 zaddcl 12573 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
135, 11, 12mp2an 692 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
14 divalglem1.3 . . . . . 6 𝐷 ≠ 0
155, 6, 14divalglem1 16364 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
16 elnn0z 12542 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1713, 15, 16mpbir2an 711 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
18 iddvds 16239 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
19 dvdsabsb 16245 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2019anidms 566 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2118, 20mpbid 232 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
226, 21ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
23 nn0abscl 15278 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
245, 23ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2524nn0negzi 12572 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
26 nn0abscl 15278 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
276, 26ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2827nn0zi 12558 . . . . . . 7 (abs‘𝐷) ∈ ℤ
29 dvdsmultr2 16268 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
306, 25, 28, 29mp3an 1463 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3122, 30ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
32 zcn 12534 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
335, 32ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
34 zcn 12534 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
356, 34ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3633, 35absmuli 15371 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3736negeqi 11414 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
38 df-neg 11408 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
3933subidi 11493 . . . . . . . 8 (𝑁𝑁) = 0
4039oveq1i 7397 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4110nn0cni 12454 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
42 subsub4 11455 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4333, 33, 41, 42mp3an 1463 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4438, 40, 433eqtr2ri 2759 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4533abscli 15362 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4645recni 11188 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4735abscli 15362 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4847recni 11188 . . . . . . 7 (abs‘𝐷) ∈ ℂ
4946, 48mulneg1i 11624 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5037, 44, 493eqtr4i 2762 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5131, 50breqtrri 5134 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
52 oveq2 7395 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5352breq2d 5119 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5453, 1elrab2 3662 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5517, 51, 54mpbir2an 711 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5655ne0ii 4307 . 2 𝑆 ≠ ∅
57 infssuzcl 12891 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
584, 56, 57mp2an 692 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  {crab 3405  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406  0cn0 12442  cz 12529  cuz 12793  abscabs 15200  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223
This theorem is referenced by:  divalglem5  16367  divalglem9  16371
  Copyright terms: Public domain W3C validator