MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem2 Structured version   Visualization version   GIF version

Theorem divalglem2 15735
Description: Lemma for divalg 15743. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem2 inf(𝑆, ℝ, < ) ∈ 𝑆
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hint:   𝑆(𝑟)

Proof of Theorem divalglem2
StepHypRef Expression
1 divalglem2.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
21ssrab3 4032 . . 3 𝑆 ⊆ ℕ0
3 nn0uz 12268 . . 3 0 = (ℤ‘0)
42, 3sseqtri 3978 . 2 𝑆 ⊆ (ℤ‘0)
5 divalglem0.1 . . . . . 6 𝑁 ∈ ℤ
6 divalglem0.2 . . . . . . . . 9 𝐷 ∈ ℤ
7 zmulcl 12019 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 · 𝐷) ∈ ℤ)
85, 6, 7mp2an 691 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℤ
9 nn0abscl 14663 . . . . . . . 8 ((𝑁 · 𝐷) ∈ ℤ → (abs‘(𝑁 · 𝐷)) ∈ ℕ0)
108, 9ax-mp 5 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℕ0
1110nn0zi 11995 . . . . . 6 (abs‘(𝑁 · 𝐷)) ∈ ℤ
12 zaddcl 12010 . . . . . 6 ((𝑁 ∈ ℤ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℤ) → (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ)
135, 11, 12mp2an 691 . . . . 5 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ
14 divalglem1.3 . . . . . 6 𝐷 ≠ 0
155, 6, 14divalglem1 15734 . . . . 5 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
16 elnn0z 11982 . . . . 5 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℤ ∧ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))))
1713, 15, 16mpbir2an 710 . . . 4 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0
18 iddvds 15614 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷𝐷)
19 dvdsabsb 15620 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2019anidms 570 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷𝐷𝐷 ∥ (abs‘𝐷)))
2118, 20mpbid 235 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷))
226, 21ax-mp 5 . . . . . 6 𝐷 ∥ (abs‘𝐷)
23 nn0abscl 14663 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
245, 23ax-mp 5 . . . . . . . 8 (abs‘𝑁) ∈ ℕ0
2524nn0negzi 12009 . . . . . . 7 -(abs‘𝑁) ∈ ℤ
26 nn0abscl 14663 . . . . . . . . 9 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
276, 26ax-mp 5 . . . . . . . 8 (abs‘𝐷) ∈ ℕ0
2827nn0zi 11995 . . . . . . 7 (abs‘𝐷) ∈ ℤ
29 dvdsmultr2 15640 . . . . . . 7 ((𝐷 ∈ ℤ ∧ -(abs‘𝑁) ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))))
306, 25, 28, 29mp3an 1458 . . . . . 6 (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷)))
3122, 30ax-mp 5 . . . . 5 𝐷 ∥ (-(abs‘𝑁) · (abs‘𝐷))
32 zcn 11974 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
335, 32ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
34 zcn 11974 . . . . . . . . 9 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
356, 34ax-mp 5 . . . . . . . 8 𝐷 ∈ ℂ
3633, 35absmuli 14755 . . . . . . 7 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
3736negeqi 10868 . . . . . 6 -(abs‘(𝑁 · 𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
38 df-neg 10862 . . . . . . 7 -(abs‘(𝑁 · 𝐷)) = (0 − (abs‘(𝑁 · 𝐷)))
3933subidi 10946 . . . . . . . 8 (𝑁𝑁) = 0
4039oveq1i 7150 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (0 − (abs‘(𝑁 · 𝐷)))
4110nn0cni 11897 . . . . . . . 8 (abs‘(𝑁 · 𝐷)) ∈ ℂ
42 subsub4 10908 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (abs‘(𝑁 · 𝐷)) ∈ ℂ) → ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
4333, 33, 41, 42mp3an 1458 . . . . . . 7 ((𝑁𝑁) − (abs‘(𝑁 · 𝐷))) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
4438, 40, 433eqtr2ri 2852 . . . . . 6 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = -(abs‘(𝑁 · 𝐷))
4533abscli 14746 . . . . . . . 8 (abs‘𝑁) ∈ ℝ
4645recni 10644 . . . . . . 7 (abs‘𝑁) ∈ ℂ
4735abscli 14746 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
4847recni 10644 . . . . . . 7 (abs‘𝐷) ∈ ℂ
4946, 48mulneg1i 11075 . . . . . 6 (-(abs‘𝑁) · (abs‘𝐷)) = -((abs‘𝑁) · (abs‘𝐷))
5037, 44, 493eqtr4i 2855 . . . . 5 (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))) = (-(abs‘𝑁) · (abs‘𝐷))
5131, 50breqtrri 5069 . . . 4 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))
52 oveq2 7148 . . . . . 6 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝑁𝑟) = (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷)))))
5352breq2d 5054 . . . . 5 (𝑟 = (𝑁 + (abs‘(𝑁 · 𝐷))) → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5453, 1elrab2 3658 . . . 4 ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆 ↔ ((𝑁 + (abs‘(𝑁 · 𝐷))) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑁 + (abs‘(𝑁 · 𝐷))))))
5517, 51, 54mpbir2an 710 . . 3 (𝑁 + (abs‘(𝑁 · 𝐷))) ∈ 𝑆
5655ne0ii 4275 . 2 𝑆 ≠ ∅
57 infssuzcl 12320 . 2 ((𝑆 ⊆ (ℤ‘0) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
584, 56, 57mp2an 691 1 inf(𝑆, ℝ, < ) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2114  wne 3011  {crab 3134  wss 3908  c0 4265   class class class wbr 5042  cfv 6334  (class class class)co 7140  infcinf 8893  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860  0cn0 11885  cz 11969  cuz 12231  abscabs 14584  cdvds 15598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599
This theorem is referenced by:  divalglem5  15737  divalglem9  15741
  Copyright terms: Public domain W3C validator