MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discmp Structured version   Visualization version   GIF version

Theorem discmp 22003
Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
discmp (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)

Proof of Theorem discmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21600 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Top)
2 pwfi 8803 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32biimpi 219 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
41, 3elind 4121 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ (Top ∩ Fin))
5 fincmp 21998 . . 3 (𝒫 𝐴 ∈ (Top ∩ Fin) → 𝒫 𝐴 ∈ Comp)
64, 5syl 17 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Comp)
7 simpr 488 . . . . . . . 8 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → 𝑥𝐴)
87snssd 4702 . . . . . . 7 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ⊆ 𝐴)
9 snex 5297 . . . . . . . 8 {𝑥} ∈ V
109elpw 4501 . . . . . . 7 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
118, 10sylibr 237 . . . . . 6 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ∈ 𝒫 𝐴)
1211fmpttd 6856 . . . . 5 (𝒫 𝐴 ∈ Comp → (𝑥𝐴 ↦ {𝑥}):𝐴⟶𝒫 𝐴)
1312frnd 6494 . . . 4 (𝒫 𝐴 ∈ Comp → ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴)
14 eqid 2798 . . . . . . . 8 (𝑥𝐴 ↦ {𝑥}) = (𝑥𝐴 ↦ {𝑥})
1514rnmpt 5791 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
1615unieqi 4813 . . . . . 6 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
179dfiun2 4920 . . . . . 6 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
18 iunid 4947 . . . . . 6 𝑥𝐴 {𝑥} = 𝐴
1916, 17, 183eqtr2ri 2828 . . . . 5 𝐴 = ran (𝑥𝐴 ↦ {𝑥})
2019a1i 11 . . . 4 (𝒫 𝐴 ∈ Comp → 𝐴 = ran (𝑥𝐴 ↦ {𝑥}))
21 unipw 5308 . . . . . 6 𝒫 𝐴 = 𝐴
2221eqcomi 2807 . . . . 5 𝐴 = 𝒫 𝐴
2322cmpcov 21994 . . . 4 ((𝒫 𝐴 ∈ Comp ∧ ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴𝐴 = ran (𝑥𝐴 ↦ {𝑥})) → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
2413, 20, 23mpd3an23 1460 . . 3 (𝒫 𝐴 ∈ Comp → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
25 elinel2 4123 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
26 elinel1 4122 . . . . . . . 8 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ 𝒫 ran (𝑥𝐴 ↦ {𝑥}))
2726elpwid 4508 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ ran (𝑥𝐴 ↦ {𝑥}))
28 snfi 8577 . . . . . . . . . 10 {𝑥} ∈ Fin
2928rgenw 3118 . . . . . . . . 9 𝑥𝐴 {𝑥} ∈ Fin
3014fmpt 6851 . . . . . . . . 9 (∀𝑥𝐴 {𝑥} ∈ Fin ↔ (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin)
3129, 30mpbi 233 . . . . . . . 8 (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin
32 frn 6493 . . . . . . . 8 ((𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3331, 32mp1i 13 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3427, 33sstrd 3925 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ Fin)
35 unifi 8797 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin) → 𝑦 ∈ Fin)
3625, 34, 35syl2anc 587 . . . . 5 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
37 eleq1 2877 . . . . 5 (𝐴 = 𝑦 → (𝐴 ∈ Fin ↔ 𝑦 ∈ Fin))
3836, 37syl5ibrcom 250 . . . 4 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → (𝐴 = 𝑦𝐴 ∈ Fin))
3938rexlimiv 3239 . . 3 (∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦𝐴 ∈ Fin)
4024, 39syl 17 . 2 (𝒫 𝐴 ∈ Comp → 𝐴 ∈ Fin)
416, 40impbii 212 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525   cuni 4800   ciun 4881  cmpt 5110  ran crn 5520  wf 6320  Fincfn 8492  Topctop 21498  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-top 21499  df-cmp 21992
This theorem is referenced by:  disllycmp  22103  xkohaus  22258  xkoptsub  22259  xkopt  22260
  Copyright terms: Public domain W3C validator