MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discmp Structured version   Visualization version   GIF version

Theorem discmp 23314
Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
discmp (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)

Proof of Theorem discmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22911 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Top)
2 pwfi 9210 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32biimpi 216 . . . 4 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
41, 3elind 4149 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ (Top ∩ Fin))
5 fincmp 23309 . . 3 (𝒫 𝐴 ∈ (Top ∩ Fin) → 𝒫 𝐴 ∈ Comp)
64, 5syl 17 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Comp)
7 simpr 484 . . . . . . . 8 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → 𝑥𝐴)
87snssd 4760 . . . . . . 7 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ⊆ 𝐴)
9 vsnex 5374 . . . . . . . 8 {𝑥} ∈ V
109elpw 4553 . . . . . . 7 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
118, 10sylibr 234 . . . . . 6 ((𝒫 𝐴 ∈ Comp ∧ 𝑥𝐴) → {𝑥} ∈ 𝒫 𝐴)
1211fmpttd 7054 . . . . 5 (𝒫 𝐴 ∈ Comp → (𝑥𝐴 ↦ {𝑥}):𝐴⟶𝒫 𝐴)
1312frnd 6664 . . . 4 (𝒫 𝐴 ∈ Comp → ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴)
14 eqid 2733 . . . . . . . 8 (𝑥𝐴 ↦ {𝑥}) = (𝑥𝐴 ↦ {𝑥})
1514rnmpt 5901 . . . . . . 7 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
1615unieqi 4870 . . . . . 6 ran (𝑥𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
179dfiun2 4982 . . . . . 6 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
18 iunid 5011 . . . . . 6 𝑥𝐴 {𝑥} = 𝐴
1916, 17, 183eqtr2ri 2763 . . . . 5 𝐴 = ran (𝑥𝐴 ↦ {𝑥})
2019a1i 11 . . . 4 (𝒫 𝐴 ∈ Comp → 𝐴 = ran (𝑥𝐴 ↦ {𝑥}))
21 unipw 5393 . . . . . 6 𝒫 𝐴 = 𝐴
2221eqcomi 2742 . . . . 5 𝐴 = 𝒫 𝐴
2322cmpcov 23305 . . . 4 ((𝒫 𝐴 ∈ Comp ∧ ran (𝑥𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴𝐴 = ran (𝑥𝐴 ↦ {𝑥})) → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
2413, 20, 23mpd3an23 1465 . . 3 (𝒫 𝐴 ∈ Comp → ∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦)
25 elinel2 4151 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
26 elinel1 4150 . . . . . . . 8 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ 𝒫 ran (𝑥𝐴 ↦ {𝑥}))
2726elpwid 4558 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ ran (𝑥𝐴 ↦ {𝑥}))
28 snfi 8972 . . . . . . . . . 10 {𝑥} ∈ Fin
2928rgenw 3052 . . . . . . . . 9 𝑥𝐴 {𝑥} ∈ Fin
3014fmpt 7049 . . . . . . . . 9 (∀𝑥𝐴 {𝑥} ∈ Fin ↔ (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin)
3129, 30mpbi 230 . . . . . . . 8 (𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin
32 frn 6663 . . . . . . . 8 ((𝑥𝐴 ↦ {𝑥}):𝐴⟶Fin → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3331, 32mp1i 13 . . . . . . 7 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → ran (𝑥𝐴 ↦ {𝑥}) ⊆ Fin)
3427, 33sstrd 3941 . . . . . 6 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ Fin)
35 unifi 9235 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin) → 𝑦 ∈ Fin)
3625, 34, 35syl2anc 584 . . . . 5 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin)
37 eleq1 2821 . . . . 5 (𝐴 = 𝑦 → (𝐴 ∈ Fin ↔ 𝑦 ∈ Fin))
3836, 37syl5ibrcom 247 . . . 4 (𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin) → (𝐴 = 𝑦𝐴 ∈ Fin))
3938rexlimiv 3127 . . 3 (∃𝑦 ∈ (𝒫 ran (𝑥𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = 𝑦𝐴 ∈ Fin)
4024, 39syl 17 . 2 (𝒫 𝐴 ∈ Comp → 𝐴 ∈ Fin)
416, 40impbii 209 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4549  {csn 4575   cuni 4858   ciun 4941  cmpt 5174  ran crn 5620  wf 6482  Fincfn 8875  Topctop 22809  Compccmp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879  df-top 22810  df-cmp 23303
This theorem is referenced by:  disllycmp  23414  xkohaus  23569  xkoptsub  23570  xkopt  23571
  Copyright terms: Public domain W3C validator