| Step | Hyp | Ref
| Expression |
| 1 | | distop 22933 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝒫
𝐴 ∈
Top) |
| 2 | | pwfi 9329 |
. . . . 5
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
| 3 | 2 | biimpi 216 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝒫
𝐴 ∈
Fin) |
| 4 | 1, 3 | elind 4175 |
. . 3
⊢ (𝐴 ∈ Fin → 𝒫
𝐴 ∈ (Top ∩
Fin)) |
| 5 | | fincmp 23331 |
. . 3
⊢
(𝒫 𝐴 ∈
(Top ∩ Fin) → 𝒫 𝐴 ∈ Comp) |
| 6 | 4, 5 | syl 17 |
. 2
⊢ (𝐴 ∈ Fin → 𝒫
𝐴 ∈
Comp) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢
((𝒫 𝐴 ∈
Comp ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 8 | 7 | snssd 4785 |
. . . . . . 7
⊢
((𝒫 𝐴 ∈
Comp ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 9 | | vsnex 5404 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
| 10 | 9 | elpw 4579 |
. . . . . . 7
⊢ ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴) |
| 11 | 8, 10 | sylibr 234 |
. . . . . 6
⊢
((𝒫 𝐴 ∈
Comp ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ 𝒫 𝐴) |
| 12 | 11 | fmpttd 7105 |
. . . . 5
⊢
(𝒫 𝐴 ∈
Comp → (𝑥 ∈ 𝐴 ↦ {𝑥}):𝐴⟶𝒫 𝐴) |
| 13 | 12 | frnd 6714 |
. . . 4
⊢
(𝒫 𝐴 ∈
Comp → ran (𝑥 ∈
𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴) |
| 14 | | eqid 2735 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 15 | 14 | rnmpt 5937 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} |
| 16 | 15 | unieqi 4895 |
. . . . . 6
⊢ ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} |
| 17 | 9 | dfiun2 5009 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} |
| 18 | | iunid 5036 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| 19 | 16, 17, 18 | 3eqtr2ri 2765 |
. . . . 5
⊢ 𝐴 = ∪
ran (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 20 | 19 | a1i 11 |
. . . 4
⊢
(𝒫 𝐴 ∈
Comp → 𝐴 = ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑥})) |
| 21 | | unipw 5425 |
. . . . . 6
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 22 | 21 | eqcomi 2744 |
. . . . 5
⊢ 𝐴 = ∪
𝒫 𝐴 |
| 23 | 22 | cmpcov 23327 |
. . . 4
⊢
((𝒫 𝐴 ∈
Comp ∧ ran (𝑥 ∈
𝐴 ↦ {𝑥}) ⊆ 𝒫 𝐴 ∧ 𝐴 = ∪ ran (𝑥 ∈ 𝐴 ↦ {𝑥})) → ∃𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = ∪ 𝑦) |
| 24 | 13, 20, 23 | mpd3an23 1465 |
. . 3
⊢
(𝒫 𝐴 ∈
Comp → ∃𝑦 ∈
(𝒫 ran (𝑥 ∈
𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = ∪ 𝑦) |
| 25 | | elinel2 4177 |
. . . . . 6
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ Fin) |
| 26 | | elinel1 4176 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ∈ 𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥})) |
| 27 | 26 | elpwid 4584 |
. . . . . . 7
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ ran (𝑥 ∈ 𝐴 ↦ {𝑥})) |
| 28 | | snfi 9057 |
. . . . . . . . . 10
⊢ {𝑥} ∈ Fin |
| 29 | 28 | rgenw 3055 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 {𝑥} ∈ Fin |
| 30 | 14 | fmpt 7100 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 {𝑥} ∈ Fin ↔ (𝑥 ∈ 𝐴 ↦ {𝑥}):𝐴⟶Fin) |
| 31 | 29, 30 | mpbi 230 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}):𝐴⟶Fin |
| 32 | | frn 6713 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ {𝑥}):𝐴⟶Fin → ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ⊆ Fin) |
| 33 | 31, 32 | mp1i 13 |
. . . . . . 7
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ⊆ Fin) |
| 34 | 27, 33 | sstrd 3969 |
. . . . . 6
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → 𝑦 ⊆ Fin) |
| 35 | | unifi 9356 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin) → ∪ 𝑦
∈ Fin) |
| 36 | 25, 34, 35 | syl2anc 584 |
. . . . 5
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → ∪ 𝑦
∈ Fin) |
| 37 | | eleq1 2822 |
. . . . 5
⊢ (𝐴 = ∪
𝑦 → (𝐴 ∈ Fin ↔ ∪ 𝑦
∈ Fin)) |
| 38 | 36, 37 | syl5ibrcom 247 |
. . . 4
⊢ (𝑦 ∈ (𝒫 ran (𝑥 ∈ 𝐴 ↦ {𝑥}) ∩ Fin) → (𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin)) |
| 39 | 38 | rexlimiv 3134 |
. . 3
⊢
(∃𝑦 ∈
(𝒫 ran (𝑥 ∈
𝐴 ↦ {𝑥}) ∩ Fin)𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin) |
| 40 | 24, 39 | syl 17 |
. 2
⊢
(𝒫 𝐴 ∈
Comp → 𝐴 ∈
Fin) |
| 41 | 6, 40 | impbii 209 |
1
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Comp) |