Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funimacnv | Structured version Visualization version GIF version |
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimacnv | ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . . 3 ⊢ (𝐹 “ (◡𝐹 “ 𝐴)) = ran (𝐹 ↾ (◡𝐹 “ 𝐴)) | |
2 | funcnvres2 6514 | . . . 4 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | |
3 | 2 | rneqd 5847 | . . 3 ⊢ (Fun 𝐹 → ran ◡(◡𝐹 ↾ 𝐴) = ran (𝐹 ↾ (◡𝐹 “ 𝐴))) |
4 | 1, 3 | eqtr4id 2797 | . 2 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = ran ◡(◡𝐹 ↾ 𝐴)) |
5 | df-rn 5600 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
6 | 5 | ineq2i 4143 | . . 3 ⊢ (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom ◡𝐹) |
7 | dmres 5913 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = (𝐴 ∩ dom ◡𝐹) | |
8 | dfdm4 5804 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = ran ◡(◡𝐹 ↾ 𝐴) | |
9 | 6, 7, 8 | 3eqtr2ri 2773 | . 2 ⊢ ran ◡(◡𝐹 ↾ 𝐴) = (𝐴 ∩ ran 𝐹) |
10 | 4, 9 | eqtrdi 2794 | 1 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3886 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 |
This theorem is referenced by: funimass1 6516 funimass2 6517 rescnvimafod 6951 isercolllem2 15377 isercolllem3 15378 isercoll 15379 cncls 22425 preimane 31007 fnpreimac 31008 ffsrn 31064 gsumhashmul 31316 zarcmplem 31831 cvmliftlem15 33260 fcoreslem2 44558 imaelsetpreimafv 44847 |
Copyright terms: Public domain | W3C validator |