| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimacnv | Structured version Visualization version GIF version | ||
| Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimacnv | ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5644 | . . 3 ⊢ (𝐹 “ (◡𝐹 “ 𝐴)) = ran (𝐹 ↾ (◡𝐹 “ 𝐴)) | |
| 2 | funcnvres2 6580 | . . . 4 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | |
| 3 | 2 | rneqd 5891 | . . 3 ⊢ (Fun 𝐹 → ran ◡(◡𝐹 ↾ 𝐴) = ran (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 4 | 1, 3 | eqtr4id 2783 | . 2 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = ran ◡(◡𝐹 ↾ 𝐴)) |
| 5 | df-rn 5642 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 6 | 5 | ineq2i 4176 | . . 3 ⊢ (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom ◡𝐹) |
| 7 | dmres 5972 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = (𝐴 ∩ dom ◡𝐹) | |
| 8 | dfdm4 5849 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = ran ◡(◡𝐹 ↾ 𝐴) | |
| 9 | 6, 7, 8 | 3eqtr2ri 2759 | . 2 ⊢ ran ◡(◡𝐹 ↾ 𝐴) = (𝐴 ∩ ran 𝐹) |
| 10 | 4, 9 | eqtrdi 2780 | 1 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3910 ◡ccnv 5630 dom cdm 5631 ran crn 5632 ↾ cres 5633 “ cima 5634 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 |
| This theorem is referenced by: funimass1 6582 funimass2 6583 rescnvimafod 7027 isercolllem2 15608 isercolllem3 15609 isercoll 15610 cncls 23137 preimane 32567 fnpreimac 32568 ffsrn 32625 gsumhashmul 32974 zarcmplem 33844 cvmliftlem15 35258 fcoreslem2 47038 imaelsetpreimafv 47369 |
| Copyright terms: Public domain | W3C validator |