| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimacnv | Structured version Visualization version GIF version | ||
| Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimacnv | ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . . 3 ⊢ (𝐹 “ (◡𝐹 “ 𝐴)) = ran (𝐹 ↾ (◡𝐹 “ 𝐴)) | |
| 2 | funcnvres2 6616 | . . . 4 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | |
| 3 | 2 | rneqd 5918 | . . 3 ⊢ (Fun 𝐹 → ran ◡(◡𝐹 ↾ 𝐴) = ran (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 4 | 1, 3 | eqtr4id 2789 | . 2 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = ran ◡(◡𝐹 ↾ 𝐴)) |
| 5 | df-rn 5665 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 6 | 5 | ineq2i 4192 | . . 3 ⊢ (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom ◡𝐹) |
| 7 | dmres 5999 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = (𝐴 ∩ dom ◡𝐹) | |
| 8 | dfdm4 5875 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = ran ◡(◡𝐹 ↾ 𝐴) | |
| 9 | 6, 7, 8 | 3eqtr2ri 2765 | . 2 ⊢ ran ◡(◡𝐹 ↾ 𝐴) = (𝐴 ∩ ran 𝐹) |
| 10 | 4, 9 | eqtrdi 2786 | 1 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3925 ◡ccnv 5653 dom cdm 5654 ran crn 5655 ↾ cres 5656 “ cima 5657 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 |
| This theorem is referenced by: funimass1 6618 funimass2 6619 rescnvimafod 7063 isercolllem2 15682 isercolllem3 15683 isercoll 15684 cncls 23212 preimane 32648 fnpreimac 32649 ffsrn 32706 gsumhashmul 33055 zarcmplem 33912 cvmliftlem15 35320 fcoreslem2 47093 imaelsetpreimafv 47409 |
| Copyright terms: Public domain | W3C validator |