MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimacnv Structured version   Visualization version   GIF version

Theorem funimacnv 6499
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 5593 . . 3 (𝐹 “ (𝐹𝐴)) = ran (𝐹 ↾ (𝐹𝐴))
2 funcnvres2 6498 . . . 4 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
32rneqd 5836 . . 3 (Fun 𝐹 → ran (𝐹𝐴) = ran (𝐹 ↾ (𝐹𝐴)))
41, 3eqtr4id 2798 . 2 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = ran (𝐹𝐴))
5 df-rn 5591 . . . 4 ran 𝐹 = dom 𝐹
65ineq2i 4140 . . 3 (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom 𝐹)
7 dmres 5902 . . 3 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 dfdm4 5793 . . 3 dom (𝐹𝐴) = ran (𝐹𝐴)
96, 7, 83eqtr2ri 2773 . 2 ran (𝐹𝐴) = (𝐴 ∩ ran 𝐹)
104, 9eqtrdi 2795 1 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420
This theorem is referenced by:  funimass1  6500  funimass2  6501  rescnvimafod  6933  isercolllem2  15305  isercolllem3  15306  isercoll  15307  cncls  22333  preimane  30909  fnpreimac  30910  ffsrn  30966  gsumhashmul  31218  zarcmplem  31733  cvmliftlem15  33160  fcoreslem2  44445  imaelsetpreimafv  44735
  Copyright terms: Public domain W3C validator