MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimacnv Structured version   Visualization version   GIF version

Theorem funimacnv 6600
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 5654 . . 3 (𝐹 “ (𝐹𝐴)) = ran (𝐹 ↾ (𝐹𝐴))
2 funcnvres2 6599 . . . 4 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
32rneqd 5905 . . 3 (Fun 𝐹 → ran (𝐹𝐴) = ran (𝐹 ↾ (𝐹𝐴)))
41, 3eqtr4id 2784 . 2 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = ran (𝐹𝐴))
5 df-rn 5652 . . . 4 ran 𝐹 = dom 𝐹
65ineq2i 4183 . . 3 (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom 𝐹)
7 dmres 5986 . . 3 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 dfdm4 5862 . . 3 dom (𝐹𝐴) = ran (𝐹𝐴)
96, 7, 83eqtr2ri 2760 . 2 ran (𝐹𝐴) = (𝐴 ∩ ran 𝐹)
104, 9eqtrdi 2781 1 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3916  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516
This theorem is referenced by:  funimass1  6601  funimass2  6602  rescnvimafod  7048  isercolllem2  15639  isercolllem3  15640  isercoll  15641  cncls  23168  preimane  32601  fnpreimac  32602  ffsrn  32659  gsumhashmul  33008  zarcmplem  33878  cvmliftlem15  35292  fcoreslem2  47069  imaelsetpreimafv  47400
  Copyright terms: Public domain W3C validator