Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimacnv Structured version   Visualization version   GIF version

Theorem funimacnv 6411
 Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))

Proof of Theorem funimacnv
StepHypRef Expression
1 funcnvres2 6410 . . . 4 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
21rneqd 5784 . . 3 (Fun 𝐹 → ran (𝐹𝐴) = ran (𝐹 ↾ (𝐹𝐴)))
3 df-ima 5544 . . 3 (𝐹 “ (𝐹𝐴)) = ran (𝐹 ↾ (𝐹𝐴))
42, 3syl6reqr 2874 . 2 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = ran (𝐹𝐴))
5 df-rn 5542 . . . 4 ran 𝐹 = dom 𝐹
65ineq2i 4164 . . 3 (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom 𝐹)
7 dmres 5851 . . 3 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 dfdm4 5740 . . 3 dom (𝐹𝐴) = ran (𝐹𝐴)
96, 7, 83eqtr2ri 2850 . 2 ran (𝐹𝐴) = (𝐴 ∩ ran 𝐹)
104, 9syl6eq 2871 1 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1537   ∩ cin 3912  ◡ccnv 5530  dom cdm 5531  ran crn 5532   ↾ cres 5533   “ cima 5534  Fun wfun 6325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-fun 6333 This theorem is referenced by:  funimass1  6412  funimass2  6413  isercolllem2  15002  isercolllem3  15003  isercoll  15004  cncls  21858  preimane  30402  fnpreimac  30403  ffsrn  30452  cvmliftlem15  32553  imaelsetpreimafv  43703
 Copyright terms: Public domain W3C validator