MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimacnv Structured version   Visualization version   GIF version

Theorem funimacnv 6659
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))

Proof of Theorem funimacnv
StepHypRef Expression
1 df-ima 5713 . . 3 (𝐹 “ (𝐹𝐴)) = ran (𝐹 ↾ (𝐹𝐴))
2 funcnvres2 6658 . . . 4 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
32rneqd 5963 . . 3 (Fun 𝐹 → ran (𝐹𝐴) = ran (𝐹 ↾ (𝐹𝐴)))
41, 3eqtr4id 2799 . 2 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = ran (𝐹𝐴))
5 df-rn 5711 . . . 4 ran 𝐹 = dom 𝐹
65ineq2i 4238 . . 3 (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom 𝐹)
7 dmres 6041 . . 3 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
8 dfdm4 5920 . . 3 dom (𝐹𝐴) = ran (𝐹𝐴)
96, 7, 83eqtr2ri 2775 . 2 ran (𝐹𝐴) = (𝐴 ∩ ran 𝐹)
104, 9eqtrdi 2796 1 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  funimass1  6660  funimass2  6661  rescnvimafod  7107  isercolllem2  15714  isercolllem3  15715  isercoll  15716  cncls  23303  preimane  32688  fnpreimac  32689  ffsrn  32743  gsumhashmul  33040  zarcmplem  33827  cvmliftlem15  35266  fcoreslem2  46979  imaelsetpreimafv  47269
  Copyright terms: Public domain W3C validator