| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimacnv | Structured version Visualization version GIF version | ||
| Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimacnv | ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5632 | . . 3 ⊢ (𝐹 “ (◡𝐹 “ 𝐴)) = ran (𝐹 ↾ (◡𝐹 “ 𝐴)) | |
| 2 | funcnvres2 6562 | . . . 4 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) | |
| 3 | 2 | rneqd 5880 | . . 3 ⊢ (Fun 𝐹 → ran ◡(◡𝐹 ↾ 𝐴) = ran (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 4 | 1, 3 | eqtr4id 2783 | . 2 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = ran ◡(◡𝐹 ↾ 𝐴)) |
| 5 | df-rn 5630 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 6 | 5 | ineq2i 4168 | . . 3 ⊢ (𝐴 ∩ ran 𝐹) = (𝐴 ∩ dom ◡𝐹) |
| 7 | dmres 5963 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = (𝐴 ∩ dom ◡𝐹) | |
| 8 | dfdm4 5838 | . . 3 ⊢ dom (◡𝐹 ↾ 𝐴) = ran ◡(◡𝐹 ↾ 𝐴) | |
| 9 | 6, 7, 8 | 3eqtr2ri 2759 | . 2 ⊢ ran ◡(◡𝐹 ↾ 𝐴) = (𝐴 ∩ ran 𝐹) |
| 10 | 4, 9 | eqtrdi 2780 | 1 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3902 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 “ cima 5622 Fun wfun 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 |
| This theorem is referenced by: funimass1 6564 funimass2 6565 rescnvimafod 7007 isercolllem2 15573 isercolllem3 15574 isercoll 15575 cncls 23159 preimane 32613 fnpreimac 32614 ffsrn 32672 gsumhashmul 33014 zarcmplem 33848 cvmliftlem15 35275 fcoreslem2 47052 imaelsetpreimafv 47383 |
| Copyright terms: Public domain | W3C validator |