Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfoura Structured version   Visualization version   GIF version

Theorem sqwvfoura 42520
Description: Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfoura.t 𝑇 = (2 · π)
sqwvfoura.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfoura.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sqwvfoura (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfoura
StepHypRef Expression
1 pire 25046 . . . . . 6 π ∈ ℝ
21renegcli 10949 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 10645 . . . . . 6 0 ∈ ℝ
6 negpilt0 41553 . . . . . . 7 -π < 0
72, 5, 6ltleii 10765 . . . . . 6 -π ≤ 0
8 pipos 25048 . . . . . . 7 0 < π
95, 1, 8ltleii 10765 . . . . . 6 0 ≤ π
102, 1elicc2i 12805 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1337 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 1red 10644 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 1 ∈ ℝ)
1413renegcld 11069 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -1 ∈ ℝ)
1513, 14ifcld 4514 . . . . . . . . . 10 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
1615adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
17 sqwvfoura.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1816, 17fmptd 6880 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
1918adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℝ)
20 elioore 12771 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
2120adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
2219, 21ffvelrnd 6854 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℝ)
23 sqwvfoura.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2423nn0red 11959 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2524adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℝ)
2625, 21remulcld 10673 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
2726recoscld 15499 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
2822, 27remulcld 10673 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℝ)
2928recnd 10671 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℂ)
30 elioore 12771 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3117fvmpt2 6781 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
3230, 15, 31syl2anc2 587 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfoura.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 12397 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 25049 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 12415 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 690 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2911 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4130, 40modcld 13246 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 25047 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
43422timesi 11778 . . . . . . . . . . . . . . . 16 (2 · π) = (π + π)
4434, 43eqtri 2846 . . . . . . . . . . . . . . 15 𝑇 = (π + π)
4544oveq2i 7169 . . . . . . . . . . . . . 14 (-π + 𝑇) = (-π + (π + π))
462recni 10657 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4746, 42, 42addassi 10653 . . . . . . . . . . . . . 14 ((-π + π) + π) = (-π + (π + π))
4842negidi 10957 . . . . . . . . . . . . . . . . 17 (π + -π) = 0
4942, 46, 48addcomli 10834 . . . . . . . . . . . . . . . 16 (-π + π) = 0
5049oveq1i 7168 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (0 + π)
5142addid2i 10830 . . . . . . . . . . . . . . 15 (0 + π) = π
5250, 51eqtri 2846 . . . . . . . . . . . . . 14 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2853 . . . . . . . . . . . . 13 π = (-π + 𝑇)
542a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
55 2re 11714 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5655, 1remulcli 10659 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5734, 56eqeltri 2911 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
592rexri 10701 . . . . . . . . . . . . . . . 16 -π ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
61 0red 10646 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
6261rexrd 10693 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ*)
63 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)0))
64 ioogtlb 41777 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6560, 62, 63, 64syl3anc 1367 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6654, 30, 58, 65ltadd1dd 11253 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6753, 66eqbrtrid 5103 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6857recni 10657 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6968mulid2i 10648 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
7069eqcomi 2832 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
7170oveq2i 7169 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7271oveq1i 7168 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7330, 58readdcld 10672 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
748a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7561, 33, 73, 74, 67lttrd 10803 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7661, 73, 75ltled 10790 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
77 iooltub 41793 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7860, 62, 63, 77syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7930, 61, 58, 78ltadd1dd 11253 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
8068a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8180addid2d 10843 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8279, 81breqtrd 5094 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
83 modid 13267 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8473, 40, 76, 82, 83syl22anc 836 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
85 1zzd 12016 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
86 modcyc 13277 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8730, 40, 85, 86syl3anc 1367 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8872, 84, 873eqtr3a 2882 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8967, 88breqtrd 5094 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
9033, 41, 89ltnsymd 10791 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9190iffalsed 4480 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9232, 91eqtrd 2858 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9392oveq1d 7173 . . . . . . 7 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9493adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9594mpteq2dva 5163 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))))
96 1cnd 10638 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
9796negcld 10986 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9824adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9930adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 10673 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100recoscld 15499 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 12825 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 24168 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10624adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 12821 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 690 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3965 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 10673 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111recoscld 15499 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 10646 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 coscn 25035 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
116 ax-resscn 10596 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 3978 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
11924recnd 10671 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
120 ssid 3991 . . . . . . . . . . . 12 ℂ ⊆ ℂ
121120a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
122118, 119, 121constcncfg 42161 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
123118, 121idcncfg 42162 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
124122, 123mulcncf 24049 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
125115, 124cncfmpt1f 23523 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
126 cniccibl 24443 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
1273, 113, 125, 126syl3anc 1367 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
128103, 105, 112, 127iblss 24407 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
12997, 101, 128iblmulc2 24433 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13095, 129eqeltrd 2915 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
131 elioore 12771 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
132131, 15, 31syl2anc2 587 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
13339a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
134 0red 10646 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
135134rexrd 10693 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ*)
1361rexri 10701 . . . . . . . . . . . . . . 15 π ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
138 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0(,)π))
139 ioogtlb 41777 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
140135, 137, 138, 139syl3anc 1367 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
141134, 131, 140ltled 10790 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1421a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14357a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
144 iooltub 41793 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
145135, 137, 138, 144syl3anc 1367 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < π)
146 2timesgt 41561 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
14736, 146ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
148147, 34breqtrri 5095 . . . . . . . . . . . . . 14 π < 𝑇
149148a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π < 𝑇)
150131, 142, 143, 145, 149lttrd 10803 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
151 modid 13267 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
152131, 133, 141, 150, 151syl22anc 836 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
153152, 145eqbrtrd 5090 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
154153iftrued 4477 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
155132, 154eqtrd 2858 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
156155oveq1d 7173 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
157156adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
158157mpteq2dva 5163 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))))
15924adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
160131adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℝ)
161159, 160remulcld 10673 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
162161recoscld 15499 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
163 ioossicc 12825 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
164163a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ⊆ (0[,]π))
165 ioombl 24168 . . . . . . . 8 (0(,)π) ∈ dom vol
166165a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ∈ dom vol)
16724adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
168 iccssre 12821 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1695, 1, 168mp2an 690 . . . . . . . . . . 11 (0[,]π) ⊆ ℝ
170169sseli 3965 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
171170adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
172167, 171remulcld 10673 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
173172recoscld 15499 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
174169, 116sstri 3978 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
175174a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
176175, 119, 121constcncfg 42161 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
177175, 121idcncfg 42162 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
178176, 177mulcncf 24049 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
179115, 178cncfmpt1f 23523 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
180 cniccibl 24443 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
181113, 4, 179, 180syl3anc 1367 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
182164, 166, 173, 181iblss 24407 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
18396, 162, 182iblmulc2 24433 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
184158, 183eqeltrd 2915 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 29, 130, 184itgsplitioo 24440 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 7173 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π))
18794itgeq2dv 24384 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
18897, 101, 128itgmulc2 24436 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
189 oveq1 7165 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
190 ioosscn 41776 . . . . . . . . . . . . . . . 16 (-π(,)0) ⊆ ℂ
191190sseli 3965 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
192191mul02d 10840 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (0 · 𝑥) = 0)
193189, 192sylan9eq 2878 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) = 0)
194193fveq2d 6676 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
195 cos0 15505 . . . . . . . . . . . 12 (cos‘0) = 1
196194, 195syl6eq 2874 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
197196adantll 712 . . . . . . . . . 10 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
198197itgeq2dv 24384 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)1 d𝑥)
199 ioovolcl 24173 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (vol‘(-π(,)0)) ∈ ℝ)
2002, 5, 199mp2an 690 . . . . . . . . . . . 12 (vol‘(-π(,)0)) ∈ ℝ
201200a1i 11 . . . . . . . . . . 11 (𝜑 → (vol‘(-π(,)0)) ∈ ℝ)
202 itgconst 24421 . . . . . . . . . . 11 (((-π(,)0) ∈ dom vol ∧ (vol‘(-π(,)0)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
203105, 201, 96, 202syl3anc 1367 . . . . . . . . . 10 (𝜑 → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
204203adantr 483 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
205 volioo 24172 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ -π ≤ 0) → (vol‘(-π(,)0)) = (0 − -π))
2062, 5, 7, 205mp3an 1457 . . . . . . . . . . . . . 14 (vol‘(-π(,)0)) = (0 − -π)
207 0cn 10635 . . . . . . . . . . . . . . 15 0 ∈ ℂ
208207, 42subnegi 10967 . . . . . . . . . . . . . 14 (0 − -π) = (0 + π)
209206, 208, 513eqtri 2850 . . . . . . . . . . . . 13 (vol‘(-π(,)0)) = π
210209a1i 11 . . . . . . . . . . . 12 (𝜑 → (vol‘(-π(,)0)) = π)
211210oveq2d 7174 . . . . . . . . . . 11 (𝜑 → (1 · (vol‘(-π(,)0))) = (1 · π))
21242a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℂ)
213212mulid2d 10661 . . . . . . . . . . 11 (𝜑 → (1 · π) = π)
214211, 213eqtrd 2858 . . . . . . . . . 10 (𝜑 → (1 · (vol‘(-π(,)0))) = π)
215214adantr 483 . . . . . . . . 9 ((𝜑𝑁 = 0) → (1 · (vol‘(-π(,)0))) = π)
216198, 204, 2153eqtrd 2862 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = π)
217216oveq2d 7174 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · π))
21842mulm1i 11087 . . . . . . . 8 (-1 · π) = -π
219218a1i 11 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · π) = -π)
220 iftrue 4475 . . . . . . . . 9 (𝑁 = 0 → if(𝑁 = 0, -π, 0) = -π)
221220eqcomd 2829 . . . . . . . 8 (𝑁 = 0 → -π = if(𝑁 = 0, -π, 0))
222221adantl 484 . . . . . . 7 ((𝜑𝑁 = 0) → -π = if(𝑁 = 0, -π, 0))
223217, 219, 2223eqtrd 2862 . . . . . 6 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
22424adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℝ)
22523nn0ge0d 11961 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
226225adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 ≤ 𝑁)
227 neqne 3026 . . . . . . . . 9 𝑁 = 0 → 𝑁 ≠ 0)
228227adantl 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
229224, 226, 228ne0gt0d 10779 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 < 𝑁)
230 1cnd 10638 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 1 ∈ ℂ)
231230negcld 10986 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → -1 ∈ ℂ)
232231mul01d 10841 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · 0) = 0)
233119adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
2342a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ∈ ℝ)
235 0red 10646 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 0 ∈ ℝ)
2367a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ≤ 0)
237 simpr 487 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
238237gt0ne0d 11206 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
239233, 234, 235, 236, 238itgcoscmulx 42261 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁))
240119mul01d 10841 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · 0) = 0)
241240fveq2d 6676 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · 0)) = (sin‘0))
242 sin0 15504 . . . . . . . . . . . . . . 15 (sin‘0) = 0
243241, 242syl6eq 2874 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · 0)) = 0)
244119, 212mulneg2d 11096 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · -π) = -(𝑁 · π))
245244fveq2d 6676 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · -π)) = (sin‘-(𝑁 · π)))
246119, 212mulcld 10663 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · π) ∈ ℂ)
247 sinneg 15501 . . . . . . . . . . . . . . . 16 ((𝑁 · π) ∈ ℂ → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
248246, 247syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
249245, 248eqtrd 2858 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · -π)) = -(sin‘(𝑁 · π)))
250243, 249oveq12d 7176 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (0 − -(sin‘(𝑁 · π))))
251 0cnd 10636 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
252246sincld 15485 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · π)) ∈ ℂ)
253251, 252subnegd 11006 . . . . . . . . . . . . 13 (𝜑 → (0 − -(sin‘(𝑁 · π))) = (0 + (sin‘(𝑁 · π))))
254252addid2d 10843 . . . . . . . . . . . . 13 (𝜑 → (0 + (sin‘(𝑁 · π))) = (sin‘(𝑁 · π)))
255250, 253, 2543eqtrd 2862 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
256255adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
257256oveq1d 7173 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁) = ((sin‘(𝑁 · π)) / 𝑁))
25823nn0zd 12088 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
259 sinkpi 25109 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (sin‘(𝑁 · π)) = 0)
260258, 259syl 17 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑁 · π)) = 0)
261260oveq1d 7173 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
262261adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
263233, 238div0d 11417 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → (0 / 𝑁) = 0)
264262, 263eqtrd 2858 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = 0)
265239, 257, 2643eqtrd 2862 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = 0)
266265oveq2d 7174 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · 0))
267238neneqd 3023 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
268267iffalsed 4480 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, -π, 0) = 0)
269232, 266, 2683eqtr4d 2868 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
270229, 269syldan 593 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
271223, 270pm2.61dan 811 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
272187, 188, 2713eqtr2d 2864 . . . 4 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, -π, 0))
273157itgeq2dv 24384 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
27496, 162, 182itgmulc2 24436 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
275162, 182itgcl 24386 . . . . . . 7 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 ∈ ℂ)
276275mulid2d 10661 . . . . . 6 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥)
277 simpl 485 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 = 0)
278277oveq1d 7173 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = (0 · 𝑥))
279131recnd 10671 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
280279adantl 484 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℂ)
281280mul02d 10840 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (0 · 𝑥) = 0)
282278, 281eqtrd 2858 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = 0)
283282fveq2d 6676 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
284283, 195syl6eq 2874 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
285284adantll 712 . . . . . . . . 9 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
286285itgeq2dv 24384 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(0(,)π)1 d𝑥)
287 ioovolcl 24173 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
2885, 1, 287mp2an 690 . . . . . . . . . 10 (vol‘(0(,)π)) ∈ ℝ
289 ax-1cn 10597 . . . . . . . . . 10 1 ∈ ℂ
290 itgconst 24421 . . . . . . . . . 10 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
291165, 288, 289, 290mp3an 1457 . . . . . . . . 9 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
292291a1i 11 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
29342mulid2i 10648 . . . . . . . . . 10 (1 · π) = π
294 volioo 24172 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2955, 1, 9, 294mp3an 1457 . . . . . . . . . . . . 13 (vol‘(0(,)π)) = (π − 0)
29642subid1i 10960 . . . . . . . . . . . . 13 (π − 0) = π
297295, 296eqtri 2846 . . . . . . . . . . . 12 (vol‘(0(,)π)) = π
298297oveq2i 7169 . . . . . . . . . . 11 (1 · (vol‘(0(,)π))) = (1 · π)
299298a1i 11 . . . . . . . . . 10 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = (1 · π))
300 iftrue 4475 . . . . . . . . . 10 (𝑁 = 0 → if(𝑁 = 0, π, 0) = π)
301293, 299, 3003eqtr4a 2884 . . . . . . . . 9 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
302301adantl 484 . . . . . . . 8 ((𝜑𝑁 = 0) → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
303286, 292, 3023eqtrd 2862 . . . . . . 7 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
304260, 243oveq12d 7176 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = (0 − 0))
305251subidd 10987 . . . . . . . . . . . . 13 (𝜑 → (0 − 0) = 0)
306304, 305eqtrd 2858 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = 0)
307306oveq1d 7173 . . . . . . . . . . 11 (𝜑 → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
308307adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
309308, 263eqtrd 2858 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = 0)
3101a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → π ∈ ℝ)
3119a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 0 ≤ π)
312233, 235, 310, 311, 238itgcoscmulx 42261 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁))
313267iffalsed 4480 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, π, 0) = 0)
314309, 312, 3133eqtr4d 2868 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
315229, 314syldan 593 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
316303, 315pm2.61dan 811 . . . . . 6 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
317276, 316eqtrd 2858 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, π, 0))
318273, 274, 3173eqtr2d 2864 . . . 4 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, π, 0))
319272, 318oveq12d 7176 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) = (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)))
320319oveq1d 7173 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π) = ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π))
321220, 300oveq12d 7176 . . . . . . 7 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (-π + π))
322321, 49syl6eq 2874 . . . . . 6 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
323 iffalse 4478 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, -π, 0) = 0)
324 iffalse 4478 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, π, 0) = 0)
325323, 324oveq12d 7176 . . . . . . 7 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (0 + 0))
326 00id 10817 . . . . . . 7 (0 + 0) = 0
327325, 326syl6eq 2874 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
328322, 327pm2.61i 184 . . . . 5 (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0
329328oveq1i 7168 . . . 4 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = (0 / π)
3305, 8gtneii 10754 . . . . 5 π ≠ 0
33142, 330div0i 11376 . . . 4 (0 / π) = 0
332329, 331eqtri 2846 . . 3 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0
333332a1i 11 . 2 (𝜑 → ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0)
334186, 320, 3333eqtrd 2862 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  0cn0 11900  cz 11984  +crp 12392  (,)cioo 12741  [,]cicc 12744   mod cmo 13240  sincsin 15419  cosccos 15420  πcpi 15422  cnccncf 23486  volcvol 24066  𝐿1cibl 24220  citg 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-symdif 4221  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226  df-0p 24273  df-limc 24466  df-dv 24467
This theorem is referenced by:  fouriersw  42523
  Copyright terms: Public domain W3C validator