Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfoura Structured version   Visualization version   GIF version

Theorem sqwvfoura 43776
Description: Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfoura.t 𝑇 = (2 · π)
sqwvfoura.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfoura.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sqwvfoura (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfoura
StepHypRef Expression
1 pire 25624 . . . . . 6 π ∈ ℝ
21renegcli 11291 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 10986 . . . . . 6 0 ∈ ℝ
6 negpilt0 42826 . . . . . . 7 -π < 0
72, 5, 6ltleii 11107 . . . . . 6 -π ≤ 0
8 pipos 25626 . . . . . . 7 0 < π
95, 1, 8ltleii 11107 . . . . . 6 0 ≤ π
102, 1elicc2i 13154 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1340 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 1red 10985 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 1 ∈ ℝ)
1413renegcld 11411 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -1 ∈ ℝ)
1513, 14ifcld 4506 . . . . . . . . . 10 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
17 sqwvfoura.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1816, 17fmptd 6997 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
1918adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℝ)
20 elioore 13118 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
2120adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
2219, 21ffvelrnd 6971 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℝ)
23 sqwvfoura.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2423nn0red 12303 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2524adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℝ)
2625, 21remulcld 11014 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
2726recoscld 15862 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
2822, 27remulcld 11014 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℝ)
2928recnd 11012 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℂ)
30 elioore 13118 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3117fvmpt2 6895 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
3230, 15, 31syl2anc2 585 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfoura.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 12744 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 25627 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 12762 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 689 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2836 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4130, 40modcld 13604 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 25625 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
43422timesi 12120 . . . . . . . . . . . . . . . 16 (2 · π) = (π + π)
4434, 43eqtri 2767 . . . . . . . . . . . . . . 15 𝑇 = (π + π)
4544oveq2i 7295 . . . . . . . . . . . . . 14 (-π + 𝑇) = (-π + (π + π))
462recni 10998 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4746, 42, 42addassi 10994 . . . . . . . . . . . . . 14 ((-π + π) + π) = (-π + (π + π))
4842negidi 11299 . . . . . . . . . . . . . . . . 17 (π + -π) = 0
4942, 46, 48addcomli 11176 . . . . . . . . . . . . . . . 16 (-π + π) = 0
5049oveq1i 7294 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (0 + π)
5142addid2i 11172 . . . . . . . . . . . . . . 15 (0 + π) = π
5250, 51eqtri 2767 . . . . . . . . . . . . . 14 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2774 . . . . . . . . . . . . 13 π = (-π + 𝑇)
542a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
55 2re 12056 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5655, 1remulcli 11000 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5734, 56eqeltri 2836 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
592rexri 11042 . . . . . . . . . . . . . . . 16 -π ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
61 0red 10987 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
6261rexrd 11034 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ*)
63 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)0))
64 ioogtlb 43040 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6560, 62, 63, 64syl3anc 1370 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6654, 30, 58, 65ltadd1dd 11595 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6753, 66eqbrtrid 5110 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6857recni 10998 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6968mulid2i 10989 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
7069eqcomi 2748 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
7170oveq2i 7295 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7271oveq1i 7294 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7330, 58readdcld 11013 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
748a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7561, 33, 73, 74, 67lttrd 11145 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7661, 73, 75ltled 11132 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
77 iooltub 43055 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7860, 62, 63, 77syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7930, 61, 58, 78ltadd1dd 11595 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
8068a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8180addid2d 11185 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8279, 81breqtrd 5101 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
83 modid 13625 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8473, 40, 76, 82, 83syl22anc 836 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
85 1zzd 12360 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
86 modcyc 13635 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8730, 40, 85, 86syl3anc 1370 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8872, 84, 873eqtr3a 2803 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8967, 88breqtrd 5101 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
9033, 41, 89ltnsymd 11133 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9190iffalsed 4471 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9232, 91eqtrd 2779 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9392oveq1d 7299 . . . . . . 7 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9493adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9594mpteq2dva 5175 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))))
96 1cnd 10979 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
9796negcld 11328 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9824adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9930adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 11014 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100recoscld 15862 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 13174 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 24738 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10624adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 13170 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 689 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3918 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 11014 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111recoscld 15862 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 10987 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 coscn 25613 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
116 ax-resscn 10937 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 3931 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
11924recnd 11012 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
120 ssid 3944 . . . . . . . . . . . 12 ℂ ⊆ ℂ
121120a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
122118, 119, 121constcncfg 43420 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
123118, 121idcncfg 43421 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
124122, 123mulcncf 24619 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
125115, 124cncfmpt1f 24086 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
126 cniccibl 25014 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
1273, 113, 125, 126syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
128103, 105, 112, 127iblss 24978 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
12997, 101, 128iblmulc2 25004 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13095, 129eqeltrd 2840 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
131 elioore 13118 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
132131, 15, 31syl2anc2 585 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
13339a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
134 0red 10987 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
135134rexrd 11034 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ*)
1361rexri 11042 . . . . . . . . . . . . . . 15 π ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
138 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0(,)π))
139 ioogtlb 43040 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
140135, 137, 138, 139syl3anc 1370 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
141134, 131, 140ltled 11132 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1421a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14357a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
144 iooltub 43055 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
145135, 137, 138, 144syl3anc 1370 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < π)
146 2timesgt 42834 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
14736, 146ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
148147, 34breqtrri 5102 . . . . . . . . . . . . . 14 π < 𝑇
149148a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π < 𝑇)
150131, 142, 143, 145, 149lttrd 11145 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
151 modid 13625 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
152131, 133, 141, 150, 151syl22anc 836 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
153152, 145eqbrtrd 5097 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
154153iftrued 4468 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
155132, 154eqtrd 2779 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
156155oveq1d 7299 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
157156adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
158157mpteq2dva 5175 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))))
15924adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
160131adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℝ)
161159, 160remulcld 11014 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
162161recoscld 15862 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
163 ioossicc 13174 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
164163a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ⊆ (0[,]π))
165 ioombl 24738 . . . . . . . 8 (0(,)π) ∈ dom vol
166165a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ∈ dom vol)
16724adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
168 iccssre 13170 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1695, 1, 168mp2an 689 . . . . . . . . . . 11 (0[,]π) ⊆ ℝ
170169sseli 3918 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
171170adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
172167, 171remulcld 11014 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
173172recoscld 15862 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
174169, 116sstri 3931 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
175174a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
176175, 119, 121constcncfg 43420 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
177175, 121idcncfg 43421 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
178176, 177mulcncf 24619 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
179115, 178cncfmpt1f 24086 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
180 cniccibl 25014 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
181113, 4, 179, 180syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
182164, 166, 173, 181iblss 24978 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
18396, 162, 182iblmulc2 25004 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
184158, 183eqeltrd 2840 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 29, 130, 184itgsplitioo 25011 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 7299 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π))
18794itgeq2dv 24955 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
18897, 101, 128itgmulc2 25007 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
189 oveq1 7291 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
190 ioosscn 13150 . . . . . . . . . . . . . . . 16 (-π(,)0) ⊆ ℂ
191190sseli 3918 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
192191mul02d 11182 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (0 · 𝑥) = 0)
193189, 192sylan9eq 2799 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) = 0)
194193fveq2d 6787 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
195 cos0 15868 . . . . . . . . . . . 12 (cos‘0) = 1
196194, 195eqtrdi 2795 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
197196adantll 711 . . . . . . . . . 10 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
198197itgeq2dv 24955 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)1 d𝑥)
199 ioovolcl 24743 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (vol‘(-π(,)0)) ∈ ℝ)
2002, 5, 199mp2an 689 . . . . . . . . . . . 12 (vol‘(-π(,)0)) ∈ ℝ
201200a1i 11 . . . . . . . . . . 11 (𝜑 → (vol‘(-π(,)0)) ∈ ℝ)
202 itgconst 24992 . . . . . . . . . . 11 (((-π(,)0) ∈ dom vol ∧ (vol‘(-π(,)0)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
203105, 201, 96, 202syl3anc 1370 . . . . . . . . . 10 (𝜑 → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
204203adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
205 volioo 24742 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ -π ≤ 0) → (vol‘(-π(,)0)) = (0 − -π))
2062, 5, 7, 205mp3an 1460 . . . . . . . . . . . . . 14 (vol‘(-π(,)0)) = (0 − -π)
207 0cn 10976 . . . . . . . . . . . . . . 15 0 ∈ ℂ
208207, 42subnegi 11309 . . . . . . . . . . . . . 14 (0 − -π) = (0 + π)
209206, 208, 513eqtri 2771 . . . . . . . . . . . . 13 (vol‘(-π(,)0)) = π
210209a1i 11 . . . . . . . . . . . 12 (𝜑 → (vol‘(-π(,)0)) = π)
211210oveq2d 7300 . . . . . . . . . . 11 (𝜑 → (1 · (vol‘(-π(,)0))) = (1 · π))
21242a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℂ)
213212mulid2d 11002 . . . . . . . . . . 11 (𝜑 → (1 · π) = π)
214211, 213eqtrd 2779 . . . . . . . . . 10 (𝜑 → (1 · (vol‘(-π(,)0))) = π)
215214adantr 481 . . . . . . . . 9 ((𝜑𝑁 = 0) → (1 · (vol‘(-π(,)0))) = π)
216198, 204, 2153eqtrd 2783 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = π)
217216oveq2d 7300 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · π))
21842mulm1i 11429 . . . . . . . 8 (-1 · π) = -π
219218a1i 11 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · π) = -π)
220 iftrue 4466 . . . . . . . . 9 (𝑁 = 0 → if(𝑁 = 0, -π, 0) = -π)
221220eqcomd 2745 . . . . . . . 8 (𝑁 = 0 → -π = if(𝑁 = 0, -π, 0))
222221adantl 482 . . . . . . 7 ((𝜑𝑁 = 0) → -π = if(𝑁 = 0, -π, 0))
223217, 219, 2223eqtrd 2783 . . . . . 6 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
22424adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℝ)
22523nn0ge0d 12305 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
226225adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 ≤ 𝑁)
227 neqne 2952 . . . . . . . . 9 𝑁 = 0 → 𝑁 ≠ 0)
228227adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
229224, 226, 228ne0gt0d 11121 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 < 𝑁)
230 1cnd 10979 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 1 ∈ ℂ)
231230negcld 11328 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → -1 ∈ ℂ)
232231mul01d 11183 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · 0) = 0)
233119adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
2342a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ∈ ℝ)
235 0red 10987 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 0 ∈ ℝ)
2367a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ≤ 0)
237 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
238237gt0ne0d 11548 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
239233, 234, 235, 236, 238itgcoscmulx 43517 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁))
240119mul01d 11183 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · 0) = 0)
241240fveq2d 6787 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · 0)) = (sin‘0))
242 sin0 15867 . . . . . . . . . . . . . . 15 (sin‘0) = 0
243241, 242eqtrdi 2795 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · 0)) = 0)
244119, 212mulneg2d 11438 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · -π) = -(𝑁 · π))
245244fveq2d 6787 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · -π)) = (sin‘-(𝑁 · π)))
246119, 212mulcld 11004 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · π) ∈ ℂ)
247 sinneg 15864 . . . . . . . . . . . . . . . 16 ((𝑁 · π) ∈ ℂ → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
248246, 247syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
249245, 248eqtrd 2779 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · -π)) = -(sin‘(𝑁 · π)))
250243, 249oveq12d 7302 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (0 − -(sin‘(𝑁 · π))))
251 0cnd 10977 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
252246sincld 15848 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · π)) ∈ ℂ)
253251, 252subnegd 11348 . . . . . . . . . . . . 13 (𝜑 → (0 − -(sin‘(𝑁 · π))) = (0 + (sin‘(𝑁 · π))))
254252addid2d 11185 . . . . . . . . . . . . 13 (𝜑 → (0 + (sin‘(𝑁 · π))) = (sin‘(𝑁 · π)))
255250, 253, 2543eqtrd 2783 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
256255adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
257256oveq1d 7299 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁) = ((sin‘(𝑁 · π)) / 𝑁))
25823nn0zd 12433 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
259 sinkpi 25687 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (sin‘(𝑁 · π)) = 0)
260258, 259syl 17 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑁 · π)) = 0)
261260oveq1d 7299 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
262261adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
263233, 238div0d 11759 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → (0 / 𝑁) = 0)
264262, 263eqtrd 2779 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = 0)
265239, 257, 2643eqtrd 2783 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = 0)
266265oveq2d 7300 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · 0))
267238neneqd 2949 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
268267iffalsed 4471 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, -π, 0) = 0)
269232, 266, 2683eqtr4d 2789 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
270229, 269syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
271223, 270pm2.61dan 810 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
272187, 188, 2713eqtr2d 2785 . . . 4 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, -π, 0))
273157itgeq2dv 24955 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
27496, 162, 182itgmulc2 25007 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
275162, 182itgcl 24957 . . . . . . 7 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 ∈ ℂ)
276275mulid2d 11002 . . . . . 6 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥)
277 simpl 483 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 = 0)
278277oveq1d 7299 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = (0 · 𝑥))
279131recnd 11012 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
280279adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℂ)
281280mul02d 11182 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (0 · 𝑥) = 0)
282278, 281eqtrd 2779 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = 0)
283282fveq2d 6787 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
284283, 195eqtrdi 2795 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
285284adantll 711 . . . . . . . . 9 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
286285itgeq2dv 24955 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(0(,)π)1 d𝑥)
287 ioovolcl 24743 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
2885, 1, 287mp2an 689 . . . . . . . . . 10 (vol‘(0(,)π)) ∈ ℝ
289 ax-1cn 10938 . . . . . . . . . 10 1 ∈ ℂ
290 itgconst 24992 . . . . . . . . . 10 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
291165, 288, 289, 290mp3an 1460 . . . . . . . . 9 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
292291a1i 11 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
29342mulid2i 10989 . . . . . . . . . 10 (1 · π) = π
294 volioo 24742 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2955, 1, 9, 294mp3an 1460 . . . . . . . . . . . . 13 (vol‘(0(,)π)) = (π − 0)
29642subid1i 11302 . . . . . . . . . . . . 13 (π − 0) = π
297295, 296eqtri 2767 . . . . . . . . . . . 12 (vol‘(0(,)π)) = π
298297oveq2i 7295 . . . . . . . . . . 11 (1 · (vol‘(0(,)π))) = (1 · π)
299298a1i 11 . . . . . . . . . 10 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = (1 · π))
300 iftrue 4466 . . . . . . . . . 10 (𝑁 = 0 → if(𝑁 = 0, π, 0) = π)
301293, 299, 3003eqtr4a 2805 . . . . . . . . 9 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
302301adantl 482 . . . . . . . 8 ((𝜑𝑁 = 0) → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
303286, 292, 3023eqtrd 2783 . . . . . . 7 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
304260, 243oveq12d 7302 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = (0 − 0))
305251subidd 11329 . . . . . . . . . . . . 13 (𝜑 → (0 − 0) = 0)
306304, 305eqtrd 2779 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = 0)
307306oveq1d 7299 . . . . . . . . . . 11 (𝜑 → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
308307adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
309308, 263eqtrd 2779 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = 0)
3101a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → π ∈ ℝ)
3119a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 0 ≤ π)
312233, 235, 310, 311, 238itgcoscmulx 43517 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁))
313267iffalsed 4471 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, π, 0) = 0)
314309, 312, 3133eqtr4d 2789 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
315229, 314syldan 591 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
316303, 315pm2.61dan 810 . . . . . 6 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
317276, 316eqtrd 2779 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, π, 0))
318273, 274, 3173eqtr2d 2785 . . . 4 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, π, 0))
319272, 318oveq12d 7302 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) = (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)))
320319oveq1d 7299 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π) = ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π))
321220, 300oveq12d 7302 . . . . . . 7 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (-π + π))
322321, 49eqtrdi 2795 . . . . . 6 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
323 iffalse 4469 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, -π, 0) = 0)
324 iffalse 4469 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, π, 0) = 0)
325323, 324oveq12d 7302 . . . . . . 7 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (0 + 0))
326 00id 11159 . . . . . . 7 (0 + 0) = 0
327325, 326eqtrdi 2795 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
328322, 327pm2.61i 182 . . . . 5 (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0
329328oveq1i 7294 . . . 4 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = (0 / π)
3305, 8gtneii 11096 . . . . 5 π ≠ 0
33142, 330div0i 11718 . . . 4 (0 / π) = 0
332329, 331eqtri 2767 . . 3 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0
333332a1i 11 . 2 (𝜑 → ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0)
334186, 320, 3333eqtrd 2783 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2107  wne 2944  wss 3888  ifcif 4460   class class class wbr 5075  cmpt 5158  dom cdm 5590  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  2c2 12037  0cn0 12242  cz 12328  +crp 12739  (,)cioo 13088  [,]cicc 13091   mod cmo 13598  sincsin 15782  cosccos 15783  πcpi 15785  cnccncf 24048  volcvol 24636  𝐿1cibl 24790  citg 24791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-symdif 4177  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-limc 25039  df-dv 25040
This theorem is referenced by:  fouriersw  43779
  Copyright terms: Public domain W3C validator