Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqwvfoura Structured version   Visualization version   GIF version

Theorem sqwvfoura 46205
Description: Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sqwvfoura.t 𝑇 = (2 · π)
sqwvfoura.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
sqwvfoura.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sqwvfoura (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem sqwvfoura
StepHypRef Expression
1 pire 26416 . . . . . 6 π ∈ ℝ
21renegcli 11542 . . . . 5 -π ∈ ℝ
32a1i 11 . . . 4 (𝜑 → -π ∈ ℝ)
41a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 0re 11235 . . . . . 6 0 ∈ ℝ
6 negpilt0 45257 . . . . . . 7 -π < 0
72, 5, 6ltleii 11356 . . . . . 6 -π ≤ 0
8 pipos 26418 . . . . . . 7 0 < π
95, 1, 8ltleii 11356 . . . . . 6 0 ≤ π
102, 1elicc2i 13427 . . . . . 6 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
115, 7, 9, 10mpbir3an 1342 . . . . 5 0 ∈ (-π[,]π)
1211a1i 11 . . . 4 (𝜑 → 0 ∈ (-π[,]π))
13 1red 11234 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 1 ∈ ℝ)
1413renegcld 11662 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -1 ∈ ℝ)
1513, 14ifcld 4547 . . . . . . . . . 10 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
17 sqwvfoura.f . . . . . . . . 9 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
1816, 17fmptd 7103 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
1918adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℝ)
20 elioore 13390 . . . . . . . 8 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
2120adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℝ)
2219, 21ffvelcdmd 7074 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (𝐹𝑥) ∈ ℝ)
23 sqwvfoura.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2423nn0red 12561 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2524adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)π)) → 𝑁 ∈ ℝ)
2625, 21remulcld 11263 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
2726recoscld 16160 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
2822, 27remulcld 11263 . . . . 5 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℝ)
2928recnd 11261 . . . 4 ((𝜑𝑥 ∈ (-π(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) ∈ ℂ)
30 elioore 13390 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
3117fvmpt2 6996 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
3230, 15, 31syl2anc2 585 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
331a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
34 sqwvfoura.t . . . . . . . . . . . . . 14 𝑇 = (2 · π)
35 2rp 13011 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
36 pirp 26420 . . . . . . . . . . . . . . 15 π ∈ ℝ+
37 rpmulcl 13030 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
3835, 36, 37mp2an 692 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ+
3934, 38eqeltri 2830 . . . . . . . . . . . . 13 𝑇 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
4130, 40modcld 13890 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
42 picn 26417 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
43422timesi 12376 . . . . . . . . . . . . . . . 16 (2 · π) = (π + π)
4434, 43eqtri 2758 . . . . . . . . . . . . . . 15 𝑇 = (π + π)
4544oveq2i 7414 . . . . . . . . . . . . . 14 (-π + 𝑇) = (-π + (π + π))
462recni 11247 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4746, 42, 42addassi 11243 . . . . . . . . . . . . . 14 ((-π + π) + π) = (-π + (π + π))
4842negidi 11550 . . . . . . . . . . . . . . . . 17 (π + -π) = 0
4942, 46, 48addcomli 11425 . . . . . . . . . . . . . . . 16 (-π + π) = 0
5049oveq1i 7413 . . . . . . . . . . . . . . 15 ((-π + π) + π) = (0 + π)
5142addlidi 11421 . . . . . . . . . . . . . . 15 (0 + π) = π
5250, 51eqtri 2758 . . . . . . . . . . . . . 14 ((-π + π) + π) = π
5345, 47, 523eqtr2ri 2765 . . . . . . . . . . . . 13 π = (-π + 𝑇)
542a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
55 2re 12312 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5655, 1remulcli 11249 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℝ
5734, 56eqeltri 2830 . . . . . . . . . . . . . . 15 𝑇 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
592rexri 11291 . . . . . . . . . . . . . . . 16 -π ∈ ℝ*
6059a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ*)
61 0red 11236 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
6261rexrd 11283 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ*)
63 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)0))
64 ioogtlb 45472 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → -π < 𝑥)
6560, 62, 63, 64syl3anc 1373 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
6654, 30, 58, 65ltadd1dd 11846 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
6753, 66eqbrtrid 5154 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
6857recni 11247 . . . . . . . . . . . . . . . . 17 𝑇 ∈ ℂ
6968mullidi 11238 . . . . . . . . . . . . . . . 16 (1 · 𝑇) = 𝑇
7069eqcomi 2744 . . . . . . . . . . . . . . 15 𝑇 = (1 · 𝑇)
7170oveq2i 7414 . . . . . . . . . . . . . 14 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
7271oveq1i 7413 . . . . . . . . . . . . 13 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
7330, 58readdcld 11262 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
748a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 0 < π)
7561, 33, 73, 74, 67lttrd 11394 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
7661, 73, 75ltled 11381 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
77 iooltub 45487 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
7860, 62, 63, 77syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
7930, 61, 58, 78ltadd1dd 11846 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < (0 + 𝑇))
8068a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
8180addlidd 11434 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → (0 + 𝑇) = 𝑇)
8279, 81breqtrd 5145 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
83 modid 13911 . . . . . . . . . . . . . 14 ((((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
8473, 40, 76, 82, 83syl22anc 838 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
85 1zzd 12621 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → 1 ∈ ℤ)
86 modcyc 13921 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8730, 40, 85, 86syl3anc 1373 . . . . . . . . . . . . 13 (𝑥 ∈ (-π(,)0) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
8872, 84, 873eqtr3a 2794 . . . . . . . . . . . 12 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
8967, 88breqtrd 5145 . . . . . . . . . . 11 (𝑥 ∈ (-π(,)0) → π < (𝑥 mod 𝑇))
9033, 41, 89ltnsymd 11382 . . . . . . . . . 10 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
9190iffalsed 4511 . . . . . . . . 9 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
9232, 91eqtrd 2770 . . . . . . . 8 (𝑥 ∈ (-π(,)0) → (𝐹𝑥) = -1)
9392oveq1d 7418 . . . . . . 7 (𝑥 ∈ (-π(,)0) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9493adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (-1 · (cos‘(𝑁 · 𝑥))))
9594mpteq2dva 5214 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))))
96 1cnd 11228 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
9796negcld 11579 . . . . . 6 (𝜑 → -1 ∈ ℂ)
9824adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
9930adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π(,)0)) → 𝑥 ∈ ℝ)
10098, 99remulcld 11263 . . . . . . 7 ((𝜑𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) ∈ ℝ)
101100recoscld 16160 . . . . . 6 ((𝜑𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
102 ioossicc 13448 . . . . . . . 8 (-π(,)0) ⊆ (-π[,]0)
103102a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ⊆ (-π[,]0))
104 ioombl 25516 . . . . . . . 8 (-π(,)0) ∈ dom vol
105104a1i 11 . . . . . . 7 (𝜑 → (-π(,)0) ∈ dom vol)
10624adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑁 ∈ ℝ)
107 iccssre 13444 . . . . . . . . . . . 12 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (-π[,]0) ⊆ ℝ)
1082, 5, 107mp2an 692 . . . . . . . . . . 11 (-π[,]0) ⊆ ℝ
109108sseli 3954 . . . . . . . . . 10 (𝑥 ∈ (-π[,]0) → 𝑥 ∈ ℝ)
110109adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]0)) → 𝑥 ∈ ℝ)
111106, 110remulcld 11263 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]0)) → (𝑁 · 𝑥) ∈ ℝ)
112111recoscld 16160 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]0)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
113 0red 11236 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
114 coscn 26405 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
116 ax-resscn 11184 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
117108, 116sstri 3968 . . . . . . . . . . . 12 (-π[,]0) ⊆ ℂ
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (-π[,]0) ⊆ ℂ)
11924recnd 11261 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
120 ssid 3981 . . . . . . . . . . . 12 ℂ ⊆ ℂ
121120a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ⊆ ℂ)
122118, 119, 121constcncfg 45849 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑁) ∈ ((-π[,]0)–cn→ℂ))
123118, 121idcncfg 45850 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ 𝑥) ∈ ((-π[,]0)–cn→ℂ))
124122, 123mulcncf 25396 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (𝑁 · 𝑥)) ∈ ((-π[,]0)–cn→ℂ))
125115, 124cncfmpt1f 24856 . . . . . . . 8 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ))
126 cniccibl 25792 . . . . . . . 8 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((-π[,]0)–cn→ℂ)) → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
1273, 113, 125, 126syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥 ∈ (-π[,]0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
128103, 105, 112, 127iblss 25756 . . . . . 6 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
12997, 101, 128iblmulc2 25782 . . . . 5 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ (-1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
13095, 129eqeltrd 2834 . . . 4 (𝜑 → (𝑥 ∈ (-π(,)0) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
131 elioore 13390 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
132131, 15, 31syl2anc2 585 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
13339a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
134 0red 11236 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
135134rexrd 11283 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ*)
1361rexri 11291 . . . . . . . . . . . . . . 15 π ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → π ∈ ℝ*)
138 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0(,)π))
139 ioogtlb 45472 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
140135, 137, 138, 139syl3anc 1373 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
141134, 131, 140ltled 11381 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
1421a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
14357a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
144 iooltub 45487 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 𝑥 < π)
145135, 137, 138, 144syl3anc 1373 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → 𝑥 < π)
146 2timesgt 45265 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → π < (2 · π))
14736, 146ax-mp 5 . . . . . . . . . . . . . . 15 π < (2 · π)
148147, 34breqtrri 5146 . . . . . . . . . . . . . 14 π < 𝑇
149148a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → π < 𝑇)
150131, 142, 143, 145, 149lttrd 11394 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
151 modid 13911 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
152131, 133, 141, 150, 151syl22anc 838 . . . . . . . . . . 11 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
153152, 145eqbrtrd 5141 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
154153iftrued 4508 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
155132, 154eqtrd 2770 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (𝐹𝑥) = 1)
156155oveq1d 7418 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
157156adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) = (1 · (cos‘(𝑁 · 𝑥))))
158157mpteq2dva 5214 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) = (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))))
15924adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
160131adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℝ)
161159, 160remulcld 11263 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) ∈ ℝ)
162161recoscld 16160 . . . . . 6 ((𝜑𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
163 ioossicc 13448 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
164163a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ⊆ (0[,]π))
165 ioombl 25516 . . . . . . . 8 (0(,)π) ∈ dom vol
166165a1i 11 . . . . . . 7 (𝜑 → (0(,)π) ∈ dom vol)
16724adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℝ)
168 iccssre 13444 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
1695, 1, 168mp2an 692 . . . . . . . . . . 11 (0[,]π) ⊆ ℝ
170169sseli 3954 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
171170adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℝ)
172167, 171remulcld 11263 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 · 𝑥) ∈ ℝ)
173172recoscld 16160 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]π)) → (cos‘(𝑁 · 𝑥)) ∈ ℝ)
174169, 116sstri 3968 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
175174a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
176175, 119, 121constcncfg 45849 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑁) ∈ ((0[,]π)–cn→ℂ))
177175, 121idcncfg 45850 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ 𝑥) ∈ ((0[,]π)–cn→ℂ))
178176, 177mulcncf 25396 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (𝑁 · 𝑥)) ∈ ((0[,]π)–cn→ℂ))
179115, 178cncfmpt1f 24856 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ))
180 cniccibl 25792 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
181113, 4, 179, 180syl3anc 1373 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
182164, 166, 173, 181iblss 25756 . . . . . 6 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (cos‘(𝑁 · 𝑥))) ∈ 𝐿1)
18396, 162, 182iblmulc2 25782 . . . . 5 (𝜑 → (𝑥 ∈ (0(,)π) ↦ (1 · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
184158, 183eqeltrd 2834 . . . 4 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((𝐹𝑥) · (cos‘(𝑁 · 𝑥)))) ∈ 𝐿1)
1853, 4, 12, 29, 130, 184itgsplitioo 25789 . . 3 (𝜑 → ∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥))
186185oveq1d 7418 . 2 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π))
18794itgeq2dv 25733 . . . . 5 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
18897, 101, 128itgmulc2 25785 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(-π(,)0)(-1 · (cos‘(𝑁 · 𝑥))) d𝑥)
189 oveq1 7410 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
190 ioosscn 13423 . . . . . . . . . . . . . . . 16 (-π(,)0) ⊆ ℂ
191190sseli 3954 . . . . . . . . . . . . . . 15 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
192191mul02d 11431 . . . . . . . . . . . . . 14 (𝑥 ∈ (-π(,)0) → (0 · 𝑥) = 0)
193189, 192sylan9eq 2790 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (𝑁 · 𝑥) = 0)
194193fveq2d 6879 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
195 cos0 16166 . . . . . . . . . . . 12 (cos‘0) = 1
196194, 195eqtrdi 2786 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
197196adantll 714 . . . . . . . . . 10 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (-π(,)0)) → (cos‘(𝑁 · 𝑥)) = 1)
198197itgeq2dv 25733 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(-π(,)0)1 d𝑥)
199 ioovolcl 25521 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ 0 ∈ ℝ) → (vol‘(-π(,)0)) ∈ ℝ)
2002, 5, 199mp2an 692 . . . . . . . . . . . 12 (vol‘(-π(,)0)) ∈ ℝ
201200a1i 11 . . . . . . . . . . 11 (𝜑 → (vol‘(-π(,)0)) ∈ ℝ)
202 itgconst 25770 . . . . . . . . . . 11 (((-π(,)0) ∈ dom vol ∧ (vol‘(-π(,)0)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
203105, 201, 96, 202syl3anc 1373 . . . . . . . . . 10 (𝜑 → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
204203adantr 480 . . . . . . . . 9 ((𝜑𝑁 = 0) → ∫(-π(,)0)1 d𝑥 = (1 · (vol‘(-π(,)0))))
205 volioo 25520 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 0 ∈ ℝ ∧ -π ≤ 0) → (vol‘(-π(,)0)) = (0 − -π))
2062, 5, 7, 205mp3an 1463 . . . . . . . . . . . . . 14 (vol‘(-π(,)0)) = (0 − -π)
207 0cn 11225 . . . . . . . . . . . . . . 15 0 ∈ ℂ
208207, 42subnegi 11560 . . . . . . . . . . . . . 14 (0 − -π) = (0 + π)
209206, 208, 513eqtri 2762 . . . . . . . . . . . . 13 (vol‘(-π(,)0)) = π
210209a1i 11 . . . . . . . . . . . 12 (𝜑 → (vol‘(-π(,)0)) = π)
211210oveq2d 7419 . . . . . . . . . . 11 (𝜑 → (1 · (vol‘(-π(,)0))) = (1 · π))
21242a1i 11 . . . . . . . . . . . 12 (𝜑 → π ∈ ℂ)
213212mullidd 11251 . . . . . . . . . . 11 (𝜑 → (1 · π) = π)
214211, 213eqtrd 2770 . . . . . . . . . 10 (𝜑 → (1 · (vol‘(-π(,)0))) = π)
215214adantr 480 . . . . . . . . 9 ((𝜑𝑁 = 0) → (1 · (vol‘(-π(,)0))) = π)
216198, 204, 2153eqtrd 2774 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = π)
217216oveq2d 7419 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · π))
21842mulm1i 11680 . . . . . . . 8 (-1 · π) = -π
219218a1i 11 . . . . . . 7 ((𝜑𝑁 = 0) → (-1 · π) = -π)
220 iftrue 4506 . . . . . . . . 9 (𝑁 = 0 → if(𝑁 = 0, -π, 0) = -π)
221220eqcomd 2741 . . . . . . . 8 (𝑁 = 0 → -π = if(𝑁 = 0, -π, 0))
222221adantl 481 . . . . . . 7 ((𝜑𝑁 = 0) → -π = if(𝑁 = 0, -π, 0))
223217, 219, 2223eqtrd 2774 . . . . . 6 ((𝜑𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
22424adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℝ)
22523nn0ge0d 12563 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑁)
226225adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 ≤ 𝑁)
227 neqne 2940 . . . . . . . . 9 𝑁 = 0 → 𝑁 ≠ 0)
228227adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
229224, 226, 228ne0gt0d 11370 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → 0 < 𝑁)
230 1cnd 11228 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 1 ∈ ℂ)
231230negcld 11579 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → -1 ∈ ℂ)
232231mul01d 11432 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · 0) = 0)
233119adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ∈ ℂ)
2342a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ∈ ℝ)
235 0red 11236 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 0 ∈ ℝ)
2367a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → -π ≤ 0)
237 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝑁) → 0 < 𝑁)
238237gt0ne0d 11799 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → 𝑁 ≠ 0)
239233, 234, 235, 236, 238itgcoscmulx 45946 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁))
240119mul01d 11432 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · 0) = 0)
241240fveq2d 6879 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · 0)) = (sin‘0))
242 sin0 16165 . . . . . . . . . . . . . . 15 (sin‘0) = 0
243241, 242eqtrdi 2786 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · 0)) = 0)
244119, 212mulneg2d 11689 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · -π) = -(𝑁 · π))
245244fveq2d 6879 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘(𝑁 · -π)) = (sin‘-(𝑁 · π)))
246119, 212mulcld 11253 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 · π) ∈ ℂ)
247 sinneg 16162 . . . . . . . . . . . . . . . 16 ((𝑁 · π) ∈ ℂ → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
248246, 247syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (sin‘-(𝑁 · π)) = -(sin‘(𝑁 · π)))
249245, 248eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · -π)) = -(sin‘(𝑁 · π)))
250243, 249oveq12d 7421 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (0 − -(sin‘(𝑁 · π))))
251 0cnd 11226 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
252246sincld 16146 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑁 · π)) ∈ ℂ)
253251, 252subnegd 11599 . . . . . . . . . . . . 13 (𝜑 → (0 − -(sin‘(𝑁 · π))) = (0 + (sin‘(𝑁 · π))))
254252addlidd 11434 . . . . . . . . . . . . 13 (𝜑 → (0 + (sin‘(𝑁 · π))) = (sin‘(𝑁 · π)))
255250, 253, 2543eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
256255adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) = (sin‘(𝑁 · π)))
257256oveq1d 7418 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · 0)) − (sin‘(𝑁 · -π))) / 𝑁) = ((sin‘(𝑁 · π)) / 𝑁))
25823nn0zd 12612 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
259 sinkpi 26481 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (sin‘(𝑁 · π)) = 0)
260258, 259syl 17 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑁 · π)) = 0)
261260oveq1d 7418 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
262261adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = (0 / 𝑁))
263233, 238div0d 12014 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝑁) → (0 / 𝑁) = 0)
264262, 263eqtrd 2770 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → ((sin‘(𝑁 · π)) / 𝑁) = 0)
265239, 257, 2643eqtrd 2774 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥 = 0)
266265oveq2d 7419 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = (-1 · 0))
267238neneqd 2937 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
268267iffalsed 4511 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, -π, 0) = 0)
269232, 266, 2683eqtr4d 2780 . . . . . . 7 ((𝜑 ∧ 0 < 𝑁) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
270229, 269syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 = 0) → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
271223, 270pm2.61dan 812 . . . . 5 (𝜑 → (-1 · ∫(-π(,)0)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, -π, 0))
272187, 188, 2713eqtr2d 2776 . . . 4 (𝜑 → ∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, -π, 0))
273157itgeq2dv 25733 . . . . 5 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
27496, 162, 182itgmulc2 25785 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(1 · (cos‘(𝑁 · 𝑥))) d𝑥)
275162, 182itgcl 25735 . . . . . . 7 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 ∈ ℂ)
276275mullidd 11251 . . . . . 6 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥)
277 simpl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 = 0)
278277oveq1d 7418 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = (0 · 𝑥))
279131recnd 11261 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
280279adantl 481 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → 𝑥 ∈ ℂ)
281280mul02d 11431 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (0 · 𝑥) = 0)
282278, 281eqtrd 2770 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 · 𝑥) = 0)
283282fveq2d 6879 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = (cos‘0))
284283, 195eqtrdi 2786 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
285284adantll 714 . . . . . . . . 9 (((𝜑𝑁 = 0) ∧ 𝑥 ∈ (0(,)π)) → (cos‘(𝑁 · 𝑥)) = 1)
286285itgeq2dv 25733 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = ∫(0(,)π)1 d𝑥)
287 ioovolcl 25521 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
2885, 1, 287mp2an 692 . . . . . . . . . 10 (vol‘(0(,)π)) ∈ ℝ
289 ax-1cn 11185 . . . . . . . . . 10 1 ∈ ℂ
290 itgconst 25770 . . . . . . . . . 10 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
291165, 288, 289, 290mp3an 1463 . . . . . . . . 9 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
292291a1i 11 . . . . . . . 8 ((𝜑𝑁 = 0) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
29342mullidi 11238 . . . . . . . . . 10 (1 · π) = π
294 volioo 25520 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2955, 1, 9, 294mp3an 1463 . . . . . . . . . . . . 13 (vol‘(0(,)π)) = (π − 0)
29642subid1i 11553 . . . . . . . . . . . . 13 (π − 0) = π
297295, 296eqtri 2758 . . . . . . . . . . . 12 (vol‘(0(,)π)) = π
298297oveq2i 7414 . . . . . . . . . . 11 (1 · (vol‘(0(,)π))) = (1 · π)
299298a1i 11 . . . . . . . . . 10 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = (1 · π))
300 iftrue 4506 . . . . . . . . . 10 (𝑁 = 0 → if(𝑁 = 0, π, 0) = π)
301293, 299, 3003eqtr4a 2796 . . . . . . . . 9 (𝑁 = 0 → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
302301adantl 481 . . . . . . . 8 ((𝜑𝑁 = 0) → (1 · (vol‘(0(,)π))) = if(𝑁 = 0, π, 0))
303286, 292, 3023eqtrd 2774 . . . . . . 7 ((𝜑𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
304260, 243oveq12d 7421 . . . . . . . . . . . . 13 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = (0 − 0))
305251subidd 11580 . . . . . . . . . . . . 13 (𝜑 → (0 − 0) = 0)
306304, 305eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → ((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) = 0)
307306oveq1d 7418 . . . . . . . . . . 11 (𝜑 → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
308307adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = (0 / 𝑁))
309308, 263eqtrd 2770 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁) = 0)
3101a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → π ∈ ℝ)
3119a1i 11 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁) → 0 ≤ π)
312233, 235, 310, 311, 238itgcoscmulx 45946 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = (((sin‘(𝑁 · π)) − (sin‘(𝑁 · 0))) / 𝑁))
313267iffalsed 4511 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁) → if(𝑁 = 0, π, 0) = 0)
314309, 312, 3133eqtr4d 2780 . . . . . . . 8 ((𝜑 ∧ 0 < 𝑁) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
315229, 314syldan 591 . . . . . . 7 ((𝜑 ∧ ¬ 𝑁 = 0) → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
316303, 315pm2.61dan 812 . . . . . 6 (𝜑 → ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥 = if(𝑁 = 0, π, 0))
317276, 316eqtrd 2770 . . . . 5 (𝜑 → (1 · ∫(0(,)π)(cos‘(𝑁 · 𝑥)) d𝑥) = if(𝑁 = 0, π, 0))
318273, 274, 3173eqtr2d 2776 . . . 4 (𝜑 → ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, π, 0))
319272, 318oveq12d 7421 . . 3 (𝜑 → (∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) = (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)))
320319oveq1d 7418 . 2 (𝜑 → ((∫(-π(,)0)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 + ∫(0(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) / π) = ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π))
321220, 300oveq12d 7421 . . . . . . 7 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (-π + π))
322321, 49eqtrdi 2786 . . . . . 6 (𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
323 iffalse 4509 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, -π, 0) = 0)
324 iffalse 4509 . . . . . . . 8 𝑁 = 0 → if(𝑁 = 0, π, 0) = 0)
325323, 324oveq12d 7421 . . . . . . 7 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = (0 + 0))
326 00id 11408 . . . . . . 7 (0 + 0) = 0
327325, 326eqtrdi 2786 . . . . . 6 𝑁 = 0 → (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0)
328322, 327pm2.61i 182 . . . . 5 (if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) = 0
329328oveq1i 7413 . . . 4 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = (0 / π)
3305, 8gtneii 11345 . . . . 5 π ≠ 0
33142, 330div0i 11973 . . . 4 (0 / π) = 0
332329, 331eqtri 2758 . . 3 ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0
333332a1i 11 . 2 (𝜑 → ((if(𝑁 = 0, -π, 0) + if(𝑁 = 0, π, 0)) / π) = 0)
334186, 320, 3333eqtrd 2774 1 (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  *cxr 11266   < clt 11267  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  2c2 12293  0cn0 12499  cz 12586  +crp 13006  (,)cioo 13360  [,]cicc 13363   mod cmo 13884  sincsin 16077  cosccos 16078  πcpi 16080  cnccncf 24818  volcvol 25414  𝐿1cibl 25568  citg 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-ovol 25415  df-vol 25416  df-mbf 25570  df-itg1 25571  df-itg2 25572  df-ibl 25573  df-itg 25574  df-0p 25621  df-limc 25817  df-dv 25818
This theorem is referenced by:  fouriersw  46208
  Copyright terms: Public domain W3C validator