Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decexp2 | Structured version Visualization version GIF version |
Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
decexp2.1 | ⊢ 𝑀 ∈ ℕ0 |
decexp2.2 | ⊢ (𝑀 + 2) = 𝑁 |
Ref | Expression |
---|---|
decexp2 | ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12094 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 2nn0 12296 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
3 | decexp2.1 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
4 | 2, 3 | nn0expcli 13855 | . . . . . 6 ⊢ (2↑𝑀) ∈ ℕ0 |
5 | 4 | nn0cni 12291 | . . . . 5 ⊢ (2↑𝑀) ∈ ℂ |
6 | 1, 5 | mulcli 11028 | . . . 4 ⊢ (2 · (2↑𝑀)) ∈ ℂ |
7 | expp1 13835 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) | |
8 | 1, 3, 7 | mp2an 690 | . . . . . 6 ⊢ (2↑(𝑀 + 1)) = ((2↑𝑀) · 2) |
9 | 5, 1 | mulcomi 11029 | . . . . . 6 ⊢ ((2↑𝑀) · 2) = (2 · (2↑𝑀)) |
10 | 8, 9 | eqtr2i 2765 | . . . . 5 ⊢ (2 · (2↑𝑀)) = (2↑(𝑀 + 1)) |
11 | 10 | oveq1i 7317 | . . . 4 ⊢ ((2 · (2↑𝑀)) · 2) = ((2↑(𝑀 + 1)) · 2) |
12 | 6, 1, 11 | mulcomli 11030 | . . 3 ⊢ (2 · (2 · (2↑𝑀))) = ((2↑(𝑀 + 1)) · 2) |
13 | 4 | decbin0 12623 | . . 3 ⊢ (4 · (2↑𝑀)) = (2 · (2 · (2↑𝑀))) |
14 | peano2nn0 12319 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
15 | 3, 14 | ax-mp 5 | . . . 4 ⊢ (𝑀 + 1) ∈ ℕ0 |
16 | expp1 13835 | . . . 4 ⊢ ((2 ∈ ℂ ∧ (𝑀 + 1) ∈ ℕ0) → (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2)) | |
17 | 1, 15, 16 | mp2an 690 | . . 3 ⊢ (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2) |
18 | 12, 13, 17 | 3eqtr4i 2774 | . 2 ⊢ (4 · (2↑𝑀)) = (2↑((𝑀 + 1) + 1)) |
19 | 4nn0 12298 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
20 | 19, 4 | nn0mulcli 12317 | . . . 4 ⊢ (4 · (2↑𝑀)) ∈ ℕ0 |
21 | 20 | nn0cni 12291 | . . 3 ⊢ (4 · (2↑𝑀)) ∈ ℂ |
22 | 21 | addid1i 11208 | . 2 ⊢ ((4 · (2↑𝑀)) + 0) = (4 · (2↑𝑀)) |
23 | 3 | nn0cni 12291 | . . . . 5 ⊢ 𝑀 ∈ ℂ |
24 | ax-1cn 10975 | . . . . 5 ⊢ 1 ∈ ℂ | |
25 | 23, 24, 24 | addassi 11031 | . . . 4 ⊢ ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)) |
26 | df-2 12082 | . . . . 5 ⊢ 2 = (1 + 1) | |
27 | 26 | oveq2i 7318 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
28 | decexp2.2 | . . . 4 ⊢ (𝑀 + 2) = 𝑁 | |
29 | 25, 27, 28 | 3eqtr2ri 2771 | . . 3 ⊢ 𝑁 = ((𝑀 + 1) + 1) |
30 | 29 | oveq2i 7318 | . 2 ⊢ (2↑𝑁) = (2↑((𝑀 + 1) + 1)) |
31 | 18, 22, 30 | 3eqtr4i 2774 | 1 ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 + caddc 10920 · cmul 10922 2c2 12074 4c4 12076 ℕ0cn0 12279 ↑cexp 13828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-n0 12280 df-z 12366 df-uz 12629 df-seq 13768 df-exp 13829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |