![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decexp2 | Structured version Visualization version GIF version |
Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
decexp2.1 | โข ๐ โ โ0 |
decexp2.2 | โข (๐ + 2) = ๐ |
Ref | Expression |
---|---|
decexp2 | โข ((4 ยท (2โ๐)) + 0) = (2โ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12294 | . . . . 5 โข 2 โ โ | |
2 | 2nn0 12496 | . . . . . . 7 โข 2 โ โ0 | |
3 | decexp2.1 | . . . . . . 7 โข ๐ โ โ0 | |
4 | 2, 3 | nn0expcli 14061 | . . . . . 6 โข (2โ๐) โ โ0 |
5 | 4 | nn0cni 12491 | . . . . 5 โข (2โ๐) โ โ |
6 | 1, 5 | mulcli 11228 | . . . 4 โข (2 ยท (2โ๐)) โ โ |
7 | expp1 14041 | . . . . . . 7 โข ((2 โ โ โง ๐ โ โ0) โ (2โ(๐ + 1)) = ((2โ๐) ยท 2)) | |
8 | 1, 3, 7 | mp2an 689 | . . . . . 6 โข (2โ(๐ + 1)) = ((2โ๐) ยท 2) |
9 | 5, 1 | mulcomi 11229 | . . . . . 6 โข ((2โ๐) ยท 2) = (2 ยท (2โ๐)) |
10 | 8, 9 | eqtr2i 2760 | . . . . 5 โข (2 ยท (2โ๐)) = (2โ(๐ + 1)) |
11 | 10 | oveq1i 7422 | . . . 4 โข ((2 ยท (2โ๐)) ยท 2) = ((2โ(๐ + 1)) ยท 2) |
12 | 6, 1, 11 | mulcomli 11230 | . . 3 โข (2 ยท (2 ยท (2โ๐))) = ((2โ(๐ + 1)) ยท 2) |
13 | 4 | decbin0 12824 | . . 3 โข (4 ยท (2โ๐)) = (2 ยท (2 ยท (2โ๐))) |
14 | peano2nn0 12519 | . . . . 5 โข (๐ โ โ0 โ (๐ + 1) โ โ0) | |
15 | 3, 14 | ax-mp 5 | . . . 4 โข (๐ + 1) โ โ0 |
16 | expp1 14041 | . . . 4 โข ((2 โ โ โง (๐ + 1) โ โ0) โ (2โ((๐ + 1) + 1)) = ((2โ(๐ + 1)) ยท 2)) | |
17 | 1, 15, 16 | mp2an 689 | . . 3 โข (2โ((๐ + 1) + 1)) = ((2โ(๐ + 1)) ยท 2) |
18 | 12, 13, 17 | 3eqtr4i 2769 | . 2 โข (4 ยท (2โ๐)) = (2โ((๐ + 1) + 1)) |
19 | 4nn0 12498 | . . . . 5 โข 4 โ โ0 | |
20 | 19, 4 | nn0mulcli 12517 | . . . 4 โข (4 ยท (2โ๐)) โ โ0 |
21 | 20 | nn0cni 12491 | . . 3 โข (4 ยท (2โ๐)) โ โ |
22 | 21 | addridi 11408 | . 2 โข ((4 ยท (2โ๐)) + 0) = (4 ยท (2โ๐)) |
23 | 3 | nn0cni 12491 | . . . . 5 โข ๐ โ โ |
24 | ax-1cn 11174 | . . . . 5 โข 1 โ โ | |
25 | 23, 24, 24 | addassi 11231 | . . . 4 โข ((๐ + 1) + 1) = (๐ + (1 + 1)) |
26 | df-2 12282 | . . . . 5 โข 2 = (1 + 1) | |
27 | 26 | oveq2i 7423 | . . . 4 โข (๐ + 2) = (๐ + (1 + 1)) |
28 | decexp2.2 | . . . 4 โข (๐ + 2) = ๐ | |
29 | 25, 27, 28 | 3eqtr2ri 2766 | . . 3 โข ๐ = ((๐ + 1) + 1) |
30 | 29 | oveq2i 7423 | . 2 โข (2โ๐) = (2โ((๐ + 1) + 1)) |
31 | 18, 22, 30 | 3eqtr4i 2769 | 1 โข ((4 ยท (2โ๐)) + 0) = (2โ๐) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 โ wcel 2105 (class class class)co 7412 โcc 11114 0cc0 11116 1c1 11117 + caddc 11119 ยท cmul 11121 2c2 12274 4c4 12276 โ0cn0 12479 โcexp 14034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-seq 13974 df-exp 14035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |