Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decexp2 | Structured version Visualization version GIF version |
Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
decexp2.1 | ⊢ 𝑀 ∈ ℕ0 |
decexp2.2 | ⊢ (𝑀 + 2) = 𝑁 |
Ref | Expression |
---|---|
decexp2 | ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11791 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 2nn0 11993 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
3 | decexp2.1 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
4 | 2, 3 | nn0expcli 13547 | . . . . . 6 ⊢ (2↑𝑀) ∈ ℕ0 |
5 | 4 | nn0cni 11988 | . . . . 5 ⊢ (2↑𝑀) ∈ ℂ |
6 | 1, 5 | mulcli 10726 | . . . 4 ⊢ (2 · (2↑𝑀)) ∈ ℂ |
7 | expp1 13528 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) | |
8 | 1, 3, 7 | mp2an 692 | . . . . . 6 ⊢ (2↑(𝑀 + 1)) = ((2↑𝑀) · 2) |
9 | 5, 1 | mulcomi 10727 | . . . . . 6 ⊢ ((2↑𝑀) · 2) = (2 · (2↑𝑀)) |
10 | 8, 9 | eqtr2i 2762 | . . . . 5 ⊢ (2 · (2↑𝑀)) = (2↑(𝑀 + 1)) |
11 | 10 | oveq1i 7180 | . . . 4 ⊢ ((2 · (2↑𝑀)) · 2) = ((2↑(𝑀 + 1)) · 2) |
12 | 6, 1, 11 | mulcomli 10728 | . . 3 ⊢ (2 · (2 · (2↑𝑀))) = ((2↑(𝑀 + 1)) · 2) |
13 | 4 | decbin0 12319 | . . 3 ⊢ (4 · (2↑𝑀)) = (2 · (2 · (2↑𝑀))) |
14 | peano2nn0 12016 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
15 | 3, 14 | ax-mp 5 | . . . 4 ⊢ (𝑀 + 1) ∈ ℕ0 |
16 | expp1 13528 | . . . 4 ⊢ ((2 ∈ ℂ ∧ (𝑀 + 1) ∈ ℕ0) → (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2)) | |
17 | 1, 15, 16 | mp2an 692 | . . 3 ⊢ (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2) |
18 | 12, 13, 17 | 3eqtr4i 2771 | . 2 ⊢ (4 · (2↑𝑀)) = (2↑((𝑀 + 1) + 1)) |
19 | 4nn0 11995 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
20 | 19, 4 | nn0mulcli 12014 | . . . 4 ⊢ (4 · (2↑𝑀)) ∈ ℕ0 |
21 | 20 | nn0cni 11988 | . . 3 ⊢ (4 · (2↑𝑀)) ∈ ℂ |
22 | 21 | addid1i 10905 | . 2 ⊢ ((4 · (2↑𝑀)) + 0) = (4 · (2↑𝑀)) |
23 | 3 | nn0cni 11988 | . . . . 5 ⊢ 𝑀 ∈ ℂ |
24 | ax-1cn 10673 | . . . . 5 ⊢ 1 ∈ ℂ | |
25 | 23, 24, 24 | addassi 10729 | . . . 4 ⊢ ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)) |
26 | df-2 11779 | . . . . 5 ⊢ 2 = (1 + 1) | |
27 | 26 | oveq2i 7181 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
28 | decexp2.2 | . . . 4 ⊢ (𝑀 + 2) = 𝑁 | |
29 | 25, 27, 28 | 3eqtr2ri 2768 | . . 3 ⊢ 𝑁 = ((𝑀 + 1) + 1) |
30 | 29 | oveq2i 7181 | . 2 ⊢ (2↑𝑁) = (2↑((𝑀 + 1) + 1)) |
31 | 18, 22, 30 | 3eqtr4i 2771 | 1 ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 (class class class)co 7170 ℂcc 10613 0cc0 10615 1c1 10616 + caddc 10618 · cmul 10620 2c2 11771 4c4 11773 ℕ0cn0 11976 ↑cexp 13521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-n0 11977 df-z 12063 df-uz 12325 df-seq 13461 df-exp 13522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |