![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decexp2 | Structured version Visualization version GIF version |
Description: Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
Ref | Expression |
---|---|
decexp2.1 | ⊢ 𝑀 ∈ ℕ0 |
decexp2.2 | ⊢ (𝑀 + 2) = 𝑁 |
Ref | Expression |
---|---|
decexp2 | ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11291 | . . . . 5 ⊢ 2 ∈ ℂ | |
2 | 2nn0 11509 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
3 | decexp2.1 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
4 | 2, 3 | nn0expcli 13086 | . . . . . 6 ⊢ (2↑𝑀) ∈ ℕ0 |
5 | 4 | nn0cni 11504 | . . . . 5 ⊢ (2↑𝑀) ∈ ℂ |
6 | 1, 5 | mulcli 10245 | . . . 4 ⊢ (2 · (2↑𝑀)) ∈ ℂ |
7 | expp1 13067 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑀 + 1)) = ((2↑𝑀) · 2)) | |
8 | 1, 3, 7 | mp2an 672 | . . . . . 6 ⊢ (2↑(𝑀 + 1)) = ((2↑𝑀) · 2) |
9 | 5, 1 | mulcomi 10246 | . . . . . 6 ⊢ ((2↑𝑀) · 2) = (2 · (2↑𝑀)) |
10 | 8, 9 | eqtr2i 2794 | . . . . 5 ⊢ (2 · (2↑𝑀)) = (2↑(𝑀 + 1)) |
11 | 10 | oveq1i 6801 | . . . 4 ⊢ ((2 · (2↑𝑀)) · 2) = ((2↑(𝑀 + 1)) · 2) |
12 | 6, 1, 11 | mulcomli 10247 | . . 3 ⊢ (2 · (2 · (2↑𝑀))) = ((2↑(𝑀 + 1)) · 2) |
13 | 4 | decbin0 11881 | . . 3 ⊢ (4 · (2↑𝑀)) = (2 · (2 · (2↑𝑀))) |
14 | peano2nn0 11533 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
15 | 3, 14 | ax-mp 5 | . . . 4 ⊢ (𝑀 + 1) ∈ ℕ0 |
16 | expp1 13067 | . . . 4 ⊢ ((2 ∈ ℂ ∧ (𝑀 + 1) ∈ ℕ0) → (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2)) | |
17 | 1, 15, 16 | mp2an 672 | . . 3 ⊢ (2↑((𝑀 + 1) + 1)) = ((2↑(𝑀 + 1)) · 2) |
18 | 12, 13, 17 | 3eqtr4i 2803 | . 2 ⊢ (4 · (2↑𝑀)) = (2↑((𝑀 + 1) + 1)) |
19 | 4nn0 11511 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
20 | 19, 4 | nn0mulcli 11531 | . . . 4 ⊢ (4 · (2↑𝑀)) ∈ ℕ0 |
21 | 20 | nn0cni 11504 | . . 3 ⊢ (4 · (2↑𝑀)) ∈ ℂ |
22 | 21 | addid1i 10423 | . 2 ⊢ ((4 · (2↑𝑀)) + 0) = (4 · (2↑𝑀)) |
23 | 3 | nn0cni 11504 | . . . . 5 ⊢ 𝑀 ∈ ℂ |
24 | ax-1cn 10194 | . . . . 5 ⊢ 1 ∈ ℂ | |
25 | 23, 24, 24 | addassi 10248 | . . . 4 ⊢ ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)) |
26 | df-2 11279 | . . . . 5 ⊢ 2 = (1 + 1) | |
27 | 26 | oveq2i 6802 | . . . 4 ⊢ (𝑀 + 2) = (𝑀 + (1 + 1)) |
28 | decexp2.2 | . . . 4 ⊢ (𝑀 + 2) = 𝑁 | |
29 | 25, 27, 28 | 3eqtr2ri 2800 | . . 3 ⊢ 𝑁 = ((𝑀 + 1) + 1) |
30 | 29 | oveq2i 6802 | . 2 ⊢ (2↑𝑁) = (2↑((𝑀 + 1) + 1)) |
31 | 18, 22, 30 | 3eqtr4i 2803 | 1 ⊢ ((4 · (2↑𝑀)) + 0) = (2↑𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6791 ℂcc 10134 0cc0 10136 1c1 10137 + caddc 10139 · cmul 10141 2c2 11270 4c4 11272 ℕ0cn0 11492 ↑cexp 13060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-n0 11493 df-z 11578 df-uz 11887 df-seq 13002 df-exp 13061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |