MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi1dv Structured version   Visualization version   GIF version

Theorem abbi1dv 2878
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
abbi1dv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abbi1dv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbi1dv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 222 . . 3 (𝜑 → (𝑥𝐴𝜓))
32abbi2dv 2877 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2744 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  rabeqcda  3429  abidnf  3638  csbtt  3849  csbie2g  3875  csbvarg  4365  iinxsng  5017  predep  6233  fnsnfv  6847  enfin2i  10077  fin1a2lem11  10166  hashf1  14171  shftuz  14780  psrbaglefi  21135  psrbaglefiOLD  21136  vmappw  26265  addsid1  34127  hdmap1fval  39810  hdmapfval  39841  hgmapfval  39900
  Copyright terms: Public domain W3C validator