MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi1dv Structured version   Visualization version   GIF version

Theorem abbi1dv 2877
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Hypothesis
Ref Expression
abbi1dv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abbi1dv (𝜑 → {𝑥𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi1dv
StepHypRef Expression
1 abbi1dv.1 . . . 4 (𝜑 → (𝜓𝑥𝐴))
21bicomd 222 . . 3 (𝜑 → (𝑥𝐴𝜓))
32abbi2dv 2876 . 2 (𝜑𝐴 = {𝑥𝜓})
43eqcomd 2744 1 (𝜑 → {𝑥𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  rabeqcda  3419  abidnf  3633  csbtt  3845  csbie2g  3871  csbvarg  4362  iinxsng  5013  predep  6222  fnsnfv  6829  enfin2i  10008  fin1a2lem11  10097  hashf1  14099  shftuz  14708  psrbaglefi  21045  psrbaglefiOLD  21046  vmappw  26170  addsid1  34054  hdmap1fval  39737  hdmapfval  39768  hgmapfval  39827
  Copyright terms: Public domain W3C validator