Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addsid1 Structured version   Visualization version   GIF version

Theorem addsid1 33702
Description: Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsid1 (𝐴 No → (𝐴 +s 0s ) = 𝐴)

Proof of Theorem addsid1
Dummy variables 𝑎 𝑏 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7162 . . 3 (𝑎 = 𝑏 → (𝑎 +s 0s ) = (𝑏 +s 0s ))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2774 . 2 (𝑎 = 𝑏 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝑏 +s 0s ) = 𝑏))
4 oveq1 7162 . . 3 (𝑎 = 𝐴 → (𝑎 +s 0s ) = (𝐴 +s 0s ))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2774 . 2 (𝑎 = 𝐴 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝐴 +s 0s ) = 𝐴))
7 0sno 33606 . . . . . 6 0s ∈ No
8 addsov 33701 . . . . . 6 ((𝑎 No ∧ 0s ∈ No ) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
97, 8mpan2 690 . . . . 5 (𝑎 No → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
109adantr 484 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
11 elun1 4083 . . . . . . . . . . . . 13 (𝑦 ∈ ( L ‘𝑎) → 𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
12 simpr 488 . . . . . . . . . . . . 13 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏)
13 oveq1 7162 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (𝑏 +s 0s ) = (𝑦 +s 0s ))
14 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦𝑏 = 𝑦)
1513, 14eqeq12d 2774 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑦 +s 0s ) = 𝑦))
1615rspcva 3541 . . . . . . . . . . . . 13 ((𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑦 +s 0s ) = 𝑦)
1711, 12, 16syl2anr 599 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑦 +s 0s ) = 𝑦)
1817eqeq2d 2769 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑥 = 𝑦))
19 equcom 2025 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
2018, 19bitrdi 290 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑦 = 𝑥))
2120rexbidva 3220 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥))
22 risset 3191 . . . . . . . . 9 (𝑥 ∈ ( L ‘𝑎) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥)
2321, 22bitr4di 292 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ 𝑥 ∈ ( L ‘𝑎)))
2423abbi1dv 2890 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} = ( L ‘𝑎))
25 rex0 4258 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦)
26 left0s 33658 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
2726rexeqi 3328 . . . . . . . . . 10 (∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦) ↔ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦))
2825, 27mtbir 326 . . . . . . . . 9 ¬ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)
2928abf 4301 . . . . . . . 8 {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅
3029a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅)
3124, 30uneq12d 4071 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = (( L ‘𝑎) ∪ ∅))
32 un0 4289 . . . . . 6 (( L ‘𝑎) ∪ ∅) = ( L ‘𝑎)
3331, 32eqtrdi 2809 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = ( L ‘𝑎))
34 elun2 4084 . . . . . . . . . . . . 13 (𝑤 ∈ ( R ‘𝑎) → 𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
35 oveq1 7162 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝑏 +s 0s ) = (𝑤 +s 0s ))
36 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤𝑏 = 𝑤)
3735, 36eqeq12d 2774 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑤 +s 0s ) = 𝑤))
3837rspcva 3541 . . . . . . . . . . . . 13 ((𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑤 +s 0s ) = 𝑤)
3934, 12, 38syl2anr 599 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑤 +s 0s ) = 𝑤)
4039eqeq2d 2769 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑥 = 𝑤))
41 equcom 2025 . . . . . . . . . . 11 (𝑥 = 𝑤𝑤 = 𝑥)
4240, 41bitrdi 290 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑤 = 𝑥))
4342rexbidva 3220 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥))
44 risset 3191 . . . . . . . . 9 (𝑥 ∈ ( R ‘𝑎) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥)
4543, 44bitr4di 292 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ 𝑥 ∈ ( R ‘𝑎)))
4645abbi1dv 2890 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} = ( R ‘𝑎))
47 rex0 4258 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤)
48 right0s 33659 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
4948rexeqi 3328 . . . . . . . . . 10 (∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤) ↔ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤))
5047, 49mtbir 326 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)
5150abf 4301 . . . . . . . 8 {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅
5251a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅)
5346, 52uneq12d 4071 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = (( R ‘𝑎) ∪ ∅))
54 un0 4289 . . . . . 6 (( R ‘𝑎) ∪ ∅) = ( R ‘𝑎)
5553, 54eqtrdi 2809 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = ( R ‘𝑎))
5633, 55oveq12d 7173 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})) = (( L ‘𝑎) |s ( R ‘𝑎)))
57 lrcut 33666 . . . . 5 (𝑎 No → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5857adantr 484 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5910, 56, 583eqtrd 2797 . . 3 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = 𝑎)
6059ex 416 . 2 (𝑎 No → (∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏 → (𝑎 +s 0s ) = 𝑎))
613, 6, 60noinds 33676 1 (𝐴 No → (𝐴 +s 0s ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  cun 3858  c0 4227  cfv 6339  (class class class)co 7155   No csur 33432   |s cscut 33566   0s c0s 33602   L cleft 33615   R cright 33616   +s cadds 33691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-1o 8117  df-2o 8118  df-frecs 33384  df-no 33435  df-slt 33436  df-bday 33437  df-sslt 33565  df-scut 33567  df-0s 33604  df-made 33617  df-old 33618  df-left 33620  df-right 33621  df-norec2 33680  df-adds 33694
This theorem is referenced by:  addsid1d  33703
  Copyright terms: Public domain W3C validator