| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexexgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of abrexexg 7959 as of 11-Dec-2024. EDITORIAL: Comment
kept since the line of equivalences to ax-rep 5249 is different.
Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7213, funex 7211, fnex 7209, resfunexg 7207, and funimaexg 6623. See also abrexex2g 7963. There are partial converses under additional conditions, see for instance abnexg 7750. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| abrexexgOLD | ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | rnmpt 5937 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 3 | mptexg 7213 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 4 | rnexg 7898 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 6 | 2, 5 | eqeltrrid 2839 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 ↦ cmpt 5201 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |