MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexgOLD Structured version   Visualization version   GIF version

Theorem abrexexgOLD 7944
Description: Obsolete version of abrexexg 7943 as of 11-Dec-2024. EDITORIAL: Comment kept since the line of equivalences to ax-rep 5284 is different.

Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7219, funex 7217, fnex 7215, resfunexg 7213, and funimaexg 6631. See also abrexex2g 7947. There are partial converses under additional conditions, see for instance abnexg 7739. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
abrexexgOLD (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexgOLD
StepHypRef Expression
1 eqid 2732 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5952 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 mptexg 7219 . . 3 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
4 rnexg 7891 . . 3 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
53, 4syl 17 . 2 (𝐴𝑉 → ran (𝑥𝐴𝐵) ∈ V)
62, 5eqeltrrid 2838 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  Vcvv 3474  cmpt 5230  ran crn 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator