MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexgOLD Structured version   Visualization version   GIF version

Theorem abrexexgOLD 7966
Description: Obsolete version of abrexexg 7965 as of 11-Dec-2024. EDITORIAL: Comment kept since the line of equivalences to ax-rep 5282 is different.

Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7229, funex 7227, fnex 7225, resfunexg 7223, and funimaexg 6636. See also abrexex2g 7969. There are partial converses under additional conditions, see for instance abnexg 7755. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
abrexexgOLD (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexgOLD
StepHypRef Expression
1 eqid 2726 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21rnmpt 5953 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
3 mptexg 7229 . . 3 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
4 rnexg 7906 . . 3 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
53, 4syl 17 . 2 (𝐴𝑉 → ran (𝑥𝐴𝐵) ∈ V)
62, 5eqeltrrid 2831 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  Vcvv 3464  cmpt 5228  ran crn 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator