MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsid Structured version   Visualization version   GIF version

Theorem negsid 28004
Description: Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negsid (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )

Proof of Theorem negsid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑥 𝑥𝐿 𝑥𝑅 𝑥𝑂 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂)
2 fveq2 6881 . . . 4 (𝑥 = 𝑥𝑂 → ( -us𝑥) = ( -us𝑥𝑂))
31, 2oveq12d 7428 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us𝑥)) = (𝑥𝑂 +s ( -us𝑥𝑂)))
43eqeq1d 2738 . 2 (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ))
5 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
6 fveq2 6881 . . . 4 (𝑥 = 𝐴 → ( -us𝑥) = ( -us𝐴))
75, 6oveq12d 7428 . . 3 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑥)) = (𝐴 +s ( -us𝐴)))
87eqeq1d 2738 . 2 (𝑥 = 𝐴 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝐴 +s ( -us𝐴)) = 0s ))
9 lltropt 27841 . . . . . 6 ( L ‘𝑥) <<s ( R ‘𝑥)
109a1i 11 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( L ‘𝑥) <<s ( R ‘𝑥))
11 negscut2 28003 . . . . . 6 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
1211adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
13 lrcut 27872 . . . . . . 7 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1413adantr 480 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1514eqcomd 2742 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
16 negsval 27988 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1716adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1810, 12, 15, 17addsunif 27966 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})))
19 negsfn 27986 . . . . . . . . 9 -us Fn No
20 rightssno 27850 . . . . . . . . 9 ( R ‘𝑥) ⊆ No
21 oveq2 7418 . . . . . . . . . . 11 (𝑝 = ( -us𝑥𝑅) → (𝑥 +s 𝑝) = (𝑥 +s ( -us𝑥𝑅)))
2221eqeq2d 2747 . . . . . . . . . 10 (𝑝 = ( -us𝑥𝑅) → (𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2322rexima 7235 . . . . . . . . 9 (( -us Fn No ∧ ( R ‘𝑥) ⊆ No ) → (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2419, 20, 23mp2an 692 . . . . . . . 8 (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)))
2524abbii 2803 . . . . . . 7 {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}
2625uneq2i 4145 . . . . . 6 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))})
27 leftssno 27849 . . . . . . . . 9 ( L ‘𝑥) ⊆ No
28 oveq2 7418 . . . . . . . . . . 11 (𝑞 = ( -us𝑥𝐿) → (𝑥 +s 𝑞) = (𝑥 +s ( -us𝑥𝐿)))
2928eqeq2d 2747 . . . . . . . . . 10 (𝑞 = ( -us𝑥𝐿) → (𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3029rexima 7235 . . . . . . . . 9 (( -us Fn No ∧ ( L ‘𝑥) ⊆ No ) → (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3119, 27, 30mp2an 692 . . . . . . . 8 (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)))
3231abbii 2803 . . . . . . 7 {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}
3332uneq2i 4145 . . . . . 6 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})
3426, 33oveq12i 7422 . . . . 5 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
35 fvex 6894 . . . . . . . . . 10 ( L ‘𝑥) ∈ V
3635abrexex 7966 . . . . . . . . 9 {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∈ V
37 fvex 6894 . . . . . . . . . 10 ( R ‘𝑥) ∈ V
3837abrexex 7966 . . . . . . . . 9 {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ∈ V
3936, 38unex 7743 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V
4039a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V)
41 snex 5411 . . . . . . . 8 { 0s } ∈ V
4241a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ∈ V)
4327sseli 3959 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 No )
4443adantl 481 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 No )
45 simpll 766 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥 No )
4645negscld 28000 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) ∈ No )
4744, 46addscld 27944 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) ∈ No )
48 eleq1 2823 . . . . . . . . . . 11 (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → (𝑎 No ↔ (𝑥𝐿 +s ( -us𝑥)) ∈ No ))
4947, 48syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5049rexlimdva 3142 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5150abssdv 4048 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ⊆ No )
52 simpll 766 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 No )
5320sseli 3959 . . . . . . . . . . . . . 14 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 No )
5453adantl 481 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 No )
5554negscld 28000 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) ∈ No )
5652, 55addscld 27944 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) ∈ No )
57 eleq1 2823 . . . . . . . . . . 11 (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → (𝑏 No ↔ (𝑥 +s ( -us𝑥𝑅)) ∈ No ))
5856, 57syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
5958rexlimdva 3142 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
6059abssdv 4048 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ⊆ No )
6151, 60unssd 4172 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ⊆ No )
62 0sno 27795 . . . . . . . 8 0s No
63 snssi 4789 . . . . . . . 8 ( 0s No → { 0s } ⊆ No )
6462, 63mp1i 13 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ⊆ No )
65 elun 4133 . . . . . . . . . . 11 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}))
66 vex 3468 . . . . . . . . . . . . 13 𝑝 ∈ V
67 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ 𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6867rexbidv 3165 . . . . . . . . . . . . 13 (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6966, 68elab 3663 . . . . . . . . . . . 12 (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)))
70 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ 𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7170rexbidv 3165 . . . . . . . . . . . . 13 (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7266, 71elab 3663 . . . . . . . . . . . 12 (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))
7369, 72orbi12i 914 . . . . . . . . . . 11 ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7465, 73bitri 275 . . . . . . . . . 10 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
75 velsn 4622 . . . . . . . . . 10 (𝑞 ∈ { 0s } ↔ 𝑞 = 0s )
7674, 75anbi12i 628 . . . . . . . . 9 ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) ↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ))
77 leftlt 27832 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 <s 𝑥)
7877adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 <s 𝑥)
79 sltnegim 28001 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐿 No 𝑥 No ) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8044, 45, 79syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8178, 80mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) <s ( -us𝑥𝐿))
8244negscld 28000 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥𝐿) ∈ No )
8346, 82, 44sltadd2d 27961 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (( -us𝑥) <s ( -us𝑥𝐿) ↔ (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿))))
8481, 83mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿)))
85 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿𝑥𝑂 = 𝑥𝐿)
86 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( -us𝑥𝑂) = ( -us𝑥𝐿))
8785, 86oveq12d 7428 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝐿 +s ( -us𝑥𝐿)))
8887eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s ))
89 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
90 elun1 4162 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9190adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9288, 89, 91rspcdva 3607 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s )
9384, 92breqtrd 5150 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s 0s )
94 breq1 5127 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → (𝑝 <s 0s ↔ (𝑥𝐿 +s ( -us𝑥)) <s 0s ))
9593, 94syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9695rexlimdva 3142 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9796imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))) → 𝑝 <s 0s )
98 rightgt 27833 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥 <s 𝑥𝑅)
9998adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 <s 𝑥𝑅)
10052, 54, 55sltadd1d 27962 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 ↔ (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅))))
10199, 100mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅)))
102 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅𝑥𝑂 = 𝑥𝑅)
103 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( -us𝑥𝑂) = ( -us𝑥𝑅))
104102, 103oveq12d 7428 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝑅 +s ( -us𝑥𝑅)))
105104eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s ))
106 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
107 elun2 4163 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
108107adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
109105, 106, 108rspcdva 3607 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s )
110101, 109breqtrd 5150 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s 0s )
111 breq1 5127 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → (𝑝 <s 0s ↔ (𝑥 +s ( -us𝑥𝑅)) <s 0s ))
112110, 111syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
113112rexlimdva 3142 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
114113imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) → 𝑝 <s 0s )
11597, 114jaodan 959 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → 𝑝 <s 0s )
116 breq2 5128 . . . . . . . . . . 11 (𝑞 = 0s → (𝑝 <s 𝑞𝑝 <s 0s ))
117115, 116syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → (𝑞 = 0s𝑝 <s 𝑞))
118117expimpd 453 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞))
11976, 118biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞))
1201193impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞)
12140, 42, 61, 64, 120ssltd 27760 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) <<s { 0s })
12237abrexex 7966 . . . . . . . . 9 {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∈ V
12335abrexex 7966 . . . . . . . . 9 {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ∈ V
124122, 123unex 7743 . . . . . . . 8 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V
125124a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V)
12652negscld 28000 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥) ∈ No )
12754, 126addscld 27944 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥)) ∈ No )
128 eleq1 2823 . . . . . . . . . . 11 (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → (𝑐 No ↔ (𝑥𝑅 +s ( -us𝑥)) ∈ No ))
129127, 128syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
130129rexlimdva 3142 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
131130abssdv 4048 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ⊆ No )
13245, 82addscld 27944 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥 +s ( -us𝑥𝐿)) ∈ No )
133 eleq1 2823 . . . . . . . . . . 11 (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → (𝑑 No ↔ (𝑥 +s ( -us𝑥𝐿)) ∈ No ))
134132, 133syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
135134rexlimdva 3142 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
136135abssdv 4048 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ⊆ No )
137131, 136unssd 4172 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ⊆ No )
138 velsn 4622 . . . . . . . . . 10 (𝑝 ∈ { 0s } ↔ 𝑝 = 0s )
139 elun 4133 . . . . . . . . . . 11 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
140 vex 3468 . . . . . . . . . . . . 13 𝑞 ∈ V
141 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ 𝑞 = (𝑥𝑅 +s ( -us𝑥))))
142141rexbidv 3165 . . . . . . . . . . . . 13 (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))))
143140, 142elab 3663 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)))
144 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ 𝑞 = (𝑥 +s ( -us𝑥𝐿))))
145144rexbidv 3165 . . . . . . . . . . . . 13 (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
146140, 145elab 3663 . . . . . . . . . . . 12 (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))
147143, 146orbi12i 914 . . . . . . . . . . 11 ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
148139, 147bitri 275 . . . . . . . . . 10 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
149138, 148anbi12i 628 . . . . . . . . 9 ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) ↔ (𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))))
150 sltnegim 28001 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 No 𝑥𝑅 No ) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
15152, 54, 150syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
15299, 151mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) <s ( -us𝑥))
15355, 126, 54sltadd2d 27961 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (( -us𝑥𝑅) <s ( -us𝑥) ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥))))
154152, 153mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥)))
155109, 154eqbrtrrd 5148 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 0s <s (𝑥𝑅 +s ( -us𝑥)))
156 breq2 5128 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅 +s ( -us𝑥))))
157155, 156syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
158157rexlimdva 3142 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
159158imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))) → 0s <s 𝑞)
16044, 45, 82sltadd1d 27962 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿))))
16178, 160mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿)))
16292, 161eqbrtrrd 5148 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 0s <s (𝑥 +s ( -us𝑥𝐿)))
163 breq2 5128 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥 +s ( -us𝑥𝐿))))
164162, 163syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
165164rexlimdva 3142 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
166165imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → 0s <s 𝑞)
167159, 166jaodan 959 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 0s <s 𝑞)
168 breq1 5127 . . . . . . . . . . . 12 (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞))
169167, 168syl5ibrcom 247 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → (𝑝 = 0s𝑝 <s 𝑞))
170169ex 412 . . . . . . . . . 10 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → (𝑝 = 0s𝑝 <s 𝑞)))
171170impcomd 411 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 𝑝 <s 𝑞))
172149, 171biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞))
1731723impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞)
17442, 125, 64, 137, 173ssltd 27760 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
175121, 174cuteq0 27801 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) = 0s )
17634, 175eqtrid 2783 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s )
17718, 176eqtrd 2771 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = 0s )
178177ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s → (𝑥 +s ( -us𝑥)) = 0s ))
1794, 8, 178noinds 27909 1 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cun 3929  wss 3931  {csn 4606   class class class wbr 5124  cima 5662   Fn wfn 6531  cfv 6536  (class class class)co 7410   No csur 27608   <s cslt 27609   <<s csslt 27749   |s cscut 27751   0s c0s 27791   L cleft 27810   R cright 27811   +s cadds 27923   -us cnegs 27982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984
This theorem is referenced by:  negsidd  28005  negsex  28006  negnegs  28007  negsdi  28013  subsid  28030  subadds  28031
  Copyright terms: Public domain W3C validator