| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . . 4
⊢ (𝑥 = 𝑥𝑂 → 𝑥 = 𝑥𝑂) | 
| 2 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = 𝑥𝑂 → ( -us
‘𝑥) = (
-us ‘𝑥𝑂)) | 
| 3 | 1, 2 | oveq12d 7450 | . . 3
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us
‘𝑥)) = (𝑥𝑂
+s ( -us ‘𝑥𝑂))) | 
| 4 | 3 | eqeq1d 2738 | . 2
⊢ (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us
‘𝑥)) = 0s
↔ (𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
)) | 
| 5 |  | id 22 | . . . 4
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | 
| 6 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = 𝐴 → ( -us ‘𝑥) = ( -us
‘𝐴)) | 
| 7 | 5, 6 | oveq12d 7450 | . . 3
⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑥)) = (𝐴 +s ( -us ‘𝐴))) | 
| 8 | 7 | eqeq1d 2738 | . 2
⊢ (𝑥 = 𝐴 → ((𝑥 +s ( -us ‘𝑥)) = 0s ↔ (𝐴 +s ( -us
‘𝐴)) = 0s
)) | 
| 9 |  | lltropt 27912 | . . . . . 6
⊢ ( L
‘𝑥) <<s ( R
‘𝑥) | 
| 10 | 9 | a1i 11 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( L ‘𝑥)
<<s ( R ‘𝑥)) | 
| 11 |  | negscut2 28073 | . . . . . 6
⊢ (𝑥 ∈ 
No  → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) | 
| 12 | 11 | adantr 480 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) | 
| 13 |  | lrcut 27942 | . . . . . . 7
⊢ (𝑥 ∈ 
No  → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (( L ‘𝑥) |s (
R ‘𝑥)) = 𝑥) | 
| 15 | 14 | eqcomd 2742 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ 𝑥 = (( L
‘𝑥) |s ( R
‘𝑥))) | 
| 16 |  | negsval 28058 | . . . . . 6
⊢ (𝑥 ∈ 
No  → ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) | 
| 17 | 16 | adantr 480 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) | 
| 18 | 10, 12, 15, 17 | addsunif 28036 | . . . 4
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
(({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}))) | 
| 19 |  | negsfn 28056 | . . . . . . . . 9
⊢ 
-us Fn  No | 
| 20 |  | rightssno 27921 | . . . . . . . . 9
⊢ ( R
‘𝑥) ⊆  No | 
| 21 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑥 +s 𝑝) = (𝑥 +s ( -us ‘𝑥𝑅))) | 
| 22 | 21 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 23 | 22 | rexima 7259 | . . . . . . . . 9
⊢ ((
-us Fn  No  ∧ ( R ‘𝑥) ⊆ 
No ) → (∃𝑝 ∈ ( -us “ ( R
‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 24 | 19, 20, 23 | mp2an 692 | . . . . . . . 8
⊢
(∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))) | 
| 25 | 24 | abbii 2808 | . . . . . . 7
⊢ {𝑏 ∣ ∃𝑝 ∈ ( -us “
( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} | 
| 26 | 25 | uneq2i 4164 | . . . . . 6
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) | 
| 27 |  | leftssno 27920 | . . . . . . . . 9
⊢ ( L
‘𝑥) ⊆  No | 
| 28 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑥 +s 𝑞) = (𝑥 +s ( -us ‘𝑥𝐿))) | 
| 29 | 28 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 30 | 29 | rexima 7259 | . . . . . . . . 9
⊢ ((
-us Fn  No  ∧ ( L ‘𝑥) ⊆ 
No ) → (∃𝑞 ∈ ( -us “ ( L
‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 31 | 19, 27, 30 | mp2an 692 | . . . . . . . 8
⊢
(∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))) | 
| 32 | 31 | abbii 2808 | . . . . . . 7
⊢ {𝑑 ∣ ∃𝑞 ∈ ( -us “
( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} | 
| 33 | 32 | uneq2i 4164 | . . . . . 6
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) | 
| 34 | 26, 33 | oveq12i 7444 | . . . . 5
⊢ (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) | 
| 35 |  | fvex 6918 | . . . . . . . . . 10
⊢ ( L
‘𝑥) ∈
V | 
| 36 | 35 | abrexex 7988 | . . . . . . . . 9
⊢ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∈ V | 
| 37 |  | fvex 6918 | . . . . . . . . . 10
⊢ ( R
‘𝑥) ∈
V | 
| 38 | 37 | abrexex 7988 | . . . . . . . . 9
⊢ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ∈
V | 
| 39 | 36, 38 | unex 7765 | . . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V | 
| 40 | 39 | a1i 11 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V) | 
| 41 |  | snex 5435 | . . . . . . . 8
⊢ {
0s } ∈ V | 
| 42 | 41 | a1i 11 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ∈ V) | 
| 43 | 27 | sseli 3978 | . . . . . . . . . . . . 13
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈
 No ) | 
| 44 | 43 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈  No ) | 
| 45 |  | simpll 766 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥 ∈  No ) | 
| 46 | 45 | negscld 28070 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) ∈  No
) | 
| 47 | 44, 46 | addscld 28014 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
∈  No ) | 
| 48 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑎 ∈  No  ↔ (𝑥𝐿 +s (
-us ‘𝑥))
∈  No )) | 
| 49 | 47, 48 | syl5ibrcom 247 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑎 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑎 ∈  No
)) | 
| 50 | 49 | rexlimdva 3154 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑎 ∈  No )) | 
| 51 | 50 | abssdv 4067 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
⊆  No ) | 
| 52 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 ∈  No ) | 
| 53 | 20 | sseli 3978 | . . . . . . . . . . . . . 14
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈
 No ) | 
| 54 | 53 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈  No ) | 
| 55 | 54 | negscld 28070 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) ∈  No ) | 
| 56 | 52, 55 | addscld 28014 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) ∈  No ) | 
| 57 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑏 ∈  No  ↔ (𝑥 +s ( -us ‘𝑥𝑅)) ∈
 No )) | 
| 58 | 56, 57 | syl5ibrcom 247 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑏 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑏 ∈ 
No )) | 
| 59 | 58 | rexlimdva 3154 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑏 ∈  No )) | 
| 60 | 59 | abssdv 4067 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ⊆
 No ) | 
| 61 | 51, 60 | unssd 4191 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ⊆
 No ) | 
| 62 |  | 0sno 27872 | . . . . . . . 8
⊢ 
0s ∈  No | 
| 63 |  | snssi 4807 | . . . . . . . 8
⊢ (
0s ∈  No  → { 0s }
⊆  No ) | 
| 64 | 62, 63 | mp1i 13 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ⊆  No
) | 
| 65 |  | elun 4152 | . . . . . . . . . . 11
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})) | 
| 66 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑝 ∈ V | 
| 67 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ 𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)))) | 
| 68 | 67 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))) | 
| 69 | 66, 68 | elab 3678 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))) | 
| 70 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 71 | 70 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 72 | 66, 71 | elab 3678 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) | 
| 73 | 69, 72 | orbi12i 914 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 74 | 65, 73 | bitri 275 | . . . . . . . . . 10
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) | 
| 75 |  | velsn 4641 | . . . . . . . . . 10
⊢ (𝑞 ∈ { 0s } ↔
𝑞 = 0s
) | 
| 76 | 74, 75 | anbi12i 628 | . . . . . . . . 9
⊢ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s
)) | 
| 77 |  | leftval 27903 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ( L
‘𝑥) = {𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥𝐿 <s 𝑥} | 
| 78 | 77 | reqabi 3459 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) ↔ (𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∧ 𝑥𝐿 <s 𝑥)) | 
| 79 | 78 | simprbi 496 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 <s 𝑥) | 
| 80 | 79 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 <s 𝑥) | 
| 81 |  | sltnegim 28071 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥𝐿 ∈
 No  ∧ 𝑥 ∈  No )
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) | 
| 82 | 44, 45, 81 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) | 
| 83 | 80, 82 | mpd 15 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) <s ( -us ‘𝑥𝐿)) | 
| 84 | 44 | negscld 28070 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥𝐿) ∈  No ) | 
| 85 | 46, 84, 44 | sltadd2d 28031 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (( -us ‘𝑥) <s ( -us ‘𝑥𝐿) ↔
(𝑥𝐿
+s ( -us ‘𝑥)) <s (𝑥𝐿 +s (
-us ‘𝑥𝐿)))) | 
| 86 | 83, 85 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s (𝑥𝐿 +s (
-us ‘𝑥𝐿))) | 
| 87 |  | id 22 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
𝑥𝑂 =
𝑥𝐿) | 
| 88 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝐿)) | 
| 89 | 87, 88 | oveq12d 7450 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝐿 +s (
-us ‘𝑥𝐿))) | 
| 90 | 89 | eqeq1d 2738 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝐿
+s ( -us ‘𝑥𝐿)) = 0s
)) | 
| 91 |  | simplr 768 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) | 
| 92 |  | elun1 4181 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) | 
| 93 | 92 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) | 
| 94 | 90, 91, 93 | rspcdva 3622 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) = 0s
) | 
| 95 | 86, 94 | breqtrd 5168 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s ) | 
| 96 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑝 <s
0s ↔ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s )) | 
| 97 | 95, 96 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑝 <s 0s )) | 
| 98 | 97 | rexlimdva 3154 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑝 <s
0s )) | 
| 99 | 98 | imp 406 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))
→ 𝑝 <s
0s ) | 
| 100 |  | rightval 27904 | . . . . . . . . . . . . . . . . . . . 20
⊢ ( R
‘𝑥) = {𝑥𝑅 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑥𝑅} | 
| 101 | 100 | reqabi 3459 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) ↔ (𝑥𝑅 ∈ ( O
‘( bday ‘𝑥)) ∧ 𝑥 <s 𝑥𝑅)) | 
| 102 | 101 | simprbi 496 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥 <s 𝑥𝑅) | 
| 103 | 102 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 <s 𝑥𝑅) | 
| 104 | 52, 54, 55 | sltadd1d 28032 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 ↔
(𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅)))) | 
| 105 | 103, 104 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅))) | 
| 106 |  | id 22 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
𝑥𝑂 =
𝑥𝑅) | 
| 107 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝑅)) | 
| 108 | 106, 107 | oveq12d 7450 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝑅 +s (
-us ‘𝑥𝑅))) | 
| 109 | 108 | eqeq1d 2738 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝑅
+s ( -us ‘𝑥𝑅)) = 0s
)) | 
| 110 |  | simplr 768 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) | 
| 111 |  | elun2 4182 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) | 
| 112 | 111 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) | 
| 113 | 109, 110,
112 | rspcdva 3622 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) = 0s
) | 
| 114 | 105, 113 | breqtrd 5168 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
) | 
| 115 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑝 <s 0s
↔ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
)) | 
| 116 | 114, 115 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑝 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑝 <s 0s
)) | 
| 117 | 116 | rexlimdva 3154 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑝 <s 0s
)) | 
| 118 | 117 | imp 406 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) →
𝑝 <s 0s
) | 
| 119 | 99, 118 | jaodan 959 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
𝑝 <s 0s
) | 
| 120 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑞 = 0s → (𝑝 <s 𝑞 ↔ 𝑝 <s 0s )) | 
| 121 | 119, 120 | syl5ibrcom 247 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
(𝑞 = 0s →
𝑝 <s 𝑞)) | 
| 122 | 121 | expimpd 453 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s ) →
𝑝 <s 𝑞)) | 
| 123 | 76, 122 | biimtrid 242 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞)) | 
| 124 | 123 | 3impib 1116 | . . . . . . 7
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞) | 
| 125 | 40, 42, 61, 64, 124 | ssltd 27837 | . . . . . 6
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})
<<s { 0s }) | 
| 126 | 37 | abrexex 7988 | . . . . . . . . 9
⊢ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∈ V | 
| 127 | 35 | abrexex 7988 | . . . . . . . . 9
⊢ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ∈
V | 
| 128 | 126, 127 | unex 7765 | . . . . . . . 8
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V | 
| 129 | 128 | a1i 11 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V) | 
| 130 | 52 | negscld 28070 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥) ∈  No
) | 
| 131 | 54, 130 | addscld 28014 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥))
∈  No ) | 
| 132 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ (𝑐 ∈  No  ↔ (𝑥𝑅 +s (
-us ‘𝑥))
∈  No )) | 
| 133 | 131, 132 | syl5ibrcom 247 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑐 = (𝑥𝑅
+s ( -us ‘𝑥)) → 𝑐 ∈  No
)) | 
| 134 | 133 | rexlimdva 3154 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 𝑐 ∈  No )) | 
| 135 | 134 | abssdv 4067 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
⊆  No ) | 
| 136 | 45, 84 | addscld 28014 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝐿)) ∈  No ) | 
| 137 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
(𝑑 ∈  No  ↔ (𝑥 +s ( -us ‘𝑥𝐿)) ∈
 No )) | 
| 138 | 136, 137 | syl5ibrcom 247 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑑 = (𝑥 +s ( -us
‘𝑥𝐿)) → 𝑑 ∈ 
No )) | 
| 139 | 138 | rexlimdva 3154 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
𝑑 ∈  No )) | 
| 140 | 139 | abssdv 4067 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ⊆
 No ) | 
| 141 | 135, 140 | unssd 4191 | . . . . . . 7
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ⊆
 No ) | 
| 142 |  | velsn 4641 | . . . . . . . . . 10
⊢ (𝑝 ∈ { 0s } ↔
𝑝 = 0s
) | 
| 143 |  | elun 4152 | . . . . . . . . . . 11
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) | 
| 144 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑞 ∈ V | 
| 145 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ 𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)))) | 
| 146 | 145 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))) | 
| 147 | 144, 146 | elab 3678 | . . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))) | 
| 148 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 149 | 148 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 150 | 144, 149 | elab 3678 | . . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) | 
| 151 | 147, 150 | orbi12i 914 | . . . . . . . . . . 11
⊢ ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 152 | 143, 151 | bitri 275 | . . . . . . . . . 10
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 153 | 142, 152 | anbi12i 628 | . . . . . . . . 9
⊢ ((𝑝 ∈ { 0s } ∧
𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) ↔
(𝑝 = 0s ∧
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))))) | 
| 154 |  | sltnegim 28071 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 
No  ∧ 𝑥𝑅 ∈  No ) → (𝑥 <s 𝑥𝑅 → ( -us
‘𝑥𝑅) <s ( -us
‘𝑥))) | 
| 155 | 52, 54, 154 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 → (
-us ‘𝑥𝑅) <s ( -us
‘𝑥))) | 
| 156 | 103, 155 | mpd 15 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) <s ( -us
‘𝑥)) | 
| 157 | 55, 130, 54 | sltadd2d 28031 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (( -us ‘𝑥𝑅) <s ( -us
‘𝑥) ↔ (𝑥𝑅
+s ( -us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥)))) | 
| 158 | 156, 157 | mpbid 232 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥))) | 
| 159 | 113, 158 | eqbrtrrd 5166 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 0s <s (𝑥𝑅 +s (
-us ‘𝑥))) | 
| 160 |  | breq2 5146 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅
+s ( -us ‘𝑥)))) | 
| 161 | 159, 160 | syl5ibrcom 247 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)) → 0s <s 𝑞)) | 
| 162 | 161 | rexlimdva 3154 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 0s <s 𝑞)) | 
| 163 | 162 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))
→ 0s <s 𝑞) | 
| 164 | 44, 45, 84 | sltadd1d 28032 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿)))) | 
| 165 | 80, 164 | mpbid 232 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿))) | 
| 166 | 94, 165 | eqbrtrrd 5166 | . . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 0s <s (𝑥 +s ( -us ‘𝑥𝐿))) | 
| 167 |  | breq2 5146 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) → (
0s <s 𝑞
↔ 0s <s (𝑥 +s ( -us ‘𝑥𝐿)))) | 
| 168 | 166, 167 | syl5ibrcom 247 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑞 = (𝑥 +s ( -us
‘𝑥𝐿)) → 0s
<s 𝑞)) | 
| 169 | 168 | rexlimdva 3154 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) →
0s <s 𝑞)) | 
| 170 | 169 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
0s <s 𝑞) | 
| 171 | 163, 170 | jaodan 959 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
0s <s 𝑞) | 
| 172 |  | breq1 5145 | . . . . . . . . . . . 12
⊢ (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞)) | 
| 173 | 171, 172 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
(𝑝 = 0s →
𝑝 <s 𝑞)) | 
| 174 | 173 | ex 412 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
(𝑝 = 0s →
𝑝 <s 𝑞))) | 
| 175 | 174 | impcomd 411 | . . . . . . . . 9
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 = 0s
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
𝑝 <s 𝑞)) | 
| 176 | 153, 175 | biimtrid 242 | . . . . . . . 8
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞)) | 
| 177 | 176 | 3impib 1116 | . . . . . . 7
⊢ (((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞) | 
| 178 | 42, 129, 64, 141, 177 | ssltd 27837 | . . . . . 6
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) | 
| 179 | 125, 178 | cuteq0 27878 | . . . . 5
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) =
0s ) | 
| 180 | 34, 179 | eqtrid 2788 | . . . 4
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s ) | 
| 181 | 18, 180 | eqtrd 2776 | . . 3
⊢ ((𝑥 ∈ 
No  ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
0s ) | 
| 182 | 181 | ex 412 | . 2
⊢ (𝑥 ∈ 
No  → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s →
(𝑥 +s (
-us ‘𝑥)) =
0s )) | 
| 183 | 4, 8, 182 | noinds 27979 | 1
⊢ (𝐴 ∈ 
No  → (𝐴
+s ( -us ‘𝐴)) = 0s ) |