Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . 4
⊢ (𝑥 = 𝑥𝑂 → 𝑥 = 𝑥𝑂) |
2 | | fveq2 6892 |
. . . 4
⊢ (𝑥 = 𝑥𝑂 → ( -us
‘𝑥) = (
-us ‘𝑥𝑂)) |
3 | 1, 2 | oveq12d 7431 |
. . 3
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us
‘𝑥)) = (𝑥𝑂
+s ( -us ‘𝑥𝑂))) |
4 | 3 | eqeq1d 2732 |
. 2
⊢ (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us
‘𝑥)) = 0s
↔ (𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
)) |
5 | | id 22 |
. . . 4
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
6 | | fveq2 6892 |
. . . 4
⊢ (𝑥 = 𝐴 → ( -us ‘𝑥) = ( -us
‘𝐴)) |
7 | 5, 6 | oveq12d 7431 |
. . 3
⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑥)) = (𝐴 +s ( -us ‘𝐴))) |
8 | 7 | eqeq1d 2732 |
. 2
⊢ (𝑥 = 𝐴 → ((𝑥 +s ( -us ‘𝑥)) = 0s ↔ (𝐴 +s ( -us
‘𝐴)) = 0s
)) |
9 | | lltropt 27602 |
. . . . . 6
⊢ ( L
‘𝑥) <<s ( R
‘𝑥) |
10 | 9 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( L ‘𝑥)
<<s ( R ‘𝑥)) |
11 | | negscut2 27751 |
. . . . . 6
⊢ (𝑥 ∈
No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) |
12 | 11 | adantr 479 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) |
13 | | lrcut 27632 |
. . . . . . 7
⊢ (𝑥 ∈
No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) |
14 | 13 | adantr 479 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (( L ‘𝑥) |s (
R ‘𝑥)) = 𝑥) |
15 | 14 | eqcomd 2736 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ 𝑥 = (( L
‘𝑥) |s ( R
‘𝑥))) |
16 | | negsval 27737 |
. . . . . 6
⊢ (𝑥 ∈
No → ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) |
17 | 16 | adantr 479 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) |
18 | 10, 12, 15, 17 | addsunif 27722 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
(({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}))) |
19 | | negsfn 27735 |
. . . . . . . . 9
⊢
-us Fn No |
20 | | rightssno 27611 |
. . . . . . . . 9
⊢ ( R
‘𝑥) ⊆ No |
21 | | oveq2 7421 |
. . . . . . . . . . 11
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑥 +s 𝑝) = (𝑥 +s ( -us ‘𝑥𝑅))) |
22 | 21 | eqeq2d 2741 |
. . . . . . . . . 10
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
23 | 22 | imaeqsexv 7364 |
. . . . . . . . 9
⊢ ((
-us Fn No ∧ ( R ‘𝑥) ⊆
No ) → (∃𝑝 ∈ ( -us “ ( R
‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
24 | 19, 20, 23 | mp2an 688 |
. . . . . . . 8
⊢
(∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))) |
25 | 24 | abbii 2800 |
. . . . . . 7
⊢ {𝑏 ∣ ∃𝑝 ∈ ( -us “
( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} |
26 | 25 | uneq2i 4161 |
. . . . . 6
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |
27 | | leftssno 27610 |
. . . . . . . . 9
⊢ ( L
‘𝑥) ⊆ No |
28 | | oveq2 7421 |
. . . . . . . . . . 11
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑥 +s 𝑞) = (𝑥 +s ( -us ‘𝑥𝐿))) |
29 | 28 | eqeq2d 2741 |
. . . . . . . . . 10
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
30 | 29 | imaeqsexv 7364 |
. . . . . . . . 9
⊢ ((
-us Fn No ∧ ( L ‘𝑥) ⊆
No ) → (∃𝑞 ∈ ( -us “ ( L
‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
31 | 19, 27, 30 | mp2an 688 |
. . . . . . . 8
⊢
(∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))) |
32 | 31 | abbii 2800 |
. . . . . . 7
⊢ {𝑑 ∣ ∃𝑞 ∈ ( -us “
( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} |
33 | 32 | uneq2i 4161 |
. . . . . 6
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) |
34 | 26, 33 | oveq12i 7425 |
. . . . 5
⊢ (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
35 | | fvex 6905 |
. . . . . . . . . 10
⊢ ( L
‘𝑥) ∈
V |
36 | 35 | abrexex 7953 |
. . . . . . . . 9
⊢ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∈ V |
37 | | fvex 6905 |
. . . . . . . . . 10
⊢ ( R
‘𝑥) ∈
V |
38 | 37 | abrexex 7953 |
. . . . . . . . 9
⊢ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ∈
V |
39 | 36, 38 | unex 7737 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V |
40 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V) |
41 | | snex 5432 |
. . . . . . . 8
⊢ {
0s } ∈ V |
42 | 41 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ∈ V) |
43 | 27 | sseli 3979 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈
No ) |
44 | 43 | adantl 480 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈ No ) |
45 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥 ∈ No ) |
46 | 45 | negscld 27748 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) ∈ No
) |
47 | 44, 46 | addscld 27700 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
∈ No ) |
48 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑎 ∈ No ↔ (𝑥𝐿 +s (
-us ‘𝑥))
∈ No )) |
49 | 47, 48 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑎 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑎 ∈ No
)) |
50 | 49 | rexlimdva 3153 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑎 ∈ No )) |
51 | 50 | abssdv 4066 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
⊆ No ) |
52 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 ∈ No ) |
53 | 20 | sseli 3979 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈
No ) |
54 | 53 | adantl 480 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈ No ) |
55 | 54 | negscld 27748 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) ∈ No ) |
56 | 52, 55 | addscld 27700 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) ∈ No ) |
57 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑏 ∈ No ↔ (𝑥 +s ( -us ‘𝑥𝑅)) ∈
No )) |
58 | 56, 57 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑏 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑏 ∈
No )) |
59 | 58 | rexlimdva 3153 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑏 ∈ No )) |
60 | 59 | abssdv 4066 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ⊆
No ) |
61 | 51, 60 | unssd 4187 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ⊆
No ) |
62 | | 0sno 27562 |
. . . . . . . 8
⊢
0s ∈ No |
63 | | snssi 4812 |
. . . . . . . 8
⊢ (
0s ∈ No → { 0s }
⊆ No ) |
64 | 62, 63 | mp1i 13 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ⊆ No
) |
65 | | elun 4149 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})) |
66 | | vex 3476 |
. . . . . . . . . . . . 13
⊢ 𝑝 ∈ V |
67 | | eqeq1 2734 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ 𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)))) |
68 | 67 | rexbidv 3176 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))) |
69 | 66, 68 | elab 3669 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))) |
70 | | eqeq1 2734 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
71 | 70 | rexbidv 3176 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
72 | 66, 71 | elab 3669 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) |
73 | 69, 72 | orbi12i 911 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
74 | 65, 73 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
75 | | velsn 4645 |
. . . . . . . . . 10
⊢ (𝑞 ∈ { 0s } ↔
𝑞 = 0s
) |
76 | 74, 75 | anbi12i 625 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s
)) |
77 | | leftval 27593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( L
‘𝑥) = {𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥𝐿 <s 𝑥} |
78 | 77 | reqabi 3452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) ↔ (𝑥𝐿 ∈ ( O
‘( bday ‘𝑥)) ∧ 𝑥𝐿 <s 𝑥)) |
79 | 78 | simprbi 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 <s 𝑥) |
80 | 79 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 <s 𝑥) |
81 | | sltnegim 27749 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥𝐿 ∈
No ∧ 𝑥 ∈ No )
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) |
82 | 44, 45, 81 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) |
83 | 80, 82 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) <s ( -us ‘𝑥𝐿)) |
84 | 44 | negscld 27748 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥𝐿) ∈ No ) |
85 | 46, 84, 44 | sltadd2d 27717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (( -us ‘𝑥) <s ( -us ‘𝑥𝐿) ↔
(𝑥𝐿
+s ( -us ‘𝑥)) <s (𝑥𝐿 +s (
-us ‘𝑥𝐿)))) |
86 | 83, 85 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s (𝑥𝐿 +s (
-us ‘𝑥𝐿))) |
87 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
𝑥𝑂 =
𝑥𝐿) |
88 | | fveq2 6892 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝐿)) |
89 | 87, 88 | oveq12d 7431 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝐿 +s (
-us ‘𝑥𝐿))) |
90 | 89 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝐿
+s ( -us ‘𝑥𝐿)) = 0s
)) |
91 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) |
92 | | elun1 4177 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) |
93 | 92 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
94 | 90, 91, 93 | rspcdva 3614 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) = 0s
) |
95 | 86, 94 | breqtrd 5175 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s ) |
96 | | breq1 5152 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑝 <s
0s ↔ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s )) |
97 | 95, 96 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑝 <s 0s )) |
98 | 97 | rexlimdva 3153 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑝 <s
0s )) |
99 | 98 | imp 405 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))
→ 𝑝 <s
0s ) |
100 | | rightval 27594 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( R
‘𝑥) = {𝑥𝑅 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑥𝑅} |
101 | 100 | reqabi 3452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) ↔ (𝑥𝑅 ∈ ( O
‘( bday ‘𝑥)) ∧ 𝑥 <s 𝑥𝑅)) |
102 | 101 | simprbi 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥 <s 𝑥𝑅) |
103 | 102 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 <s 𝑥𝑅) |
104 | 52, 54, 55 | sltadd1d 27718 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 ↔
(𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅)))) |
105 | 103, 104 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅))) |
106 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
𝑥𝑂 =
𝑥𝑅) |
107 | | fveq2 6892 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝑅)) |
108 | 106, 107 | oveq12d 7431 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝑅 +s (
-us ‘𝑥𝑅))) |
109 | 108 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝑅
+s ( -us ‘𝑥𝑅)) = 0s
)) |
110 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) |
111 | | elun2 4178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) |
112 | 111 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
113 | 109, 110,
112 | rspcdva 3614 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) = 0s
) |
114 | 105, 113 | breqtrd 5175 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
) |
115 | | breq1 5152 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑝 <s 0s
↔ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
)) |
116 | 114, 115 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑝 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑝 <s 0s
)) |
117 | 116 | rexlimdva 3153 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑝 <s 0s
)) |
118 | 117 | imp 405 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) →
𝑝 <s 0s
) |
119 | 99, 118 | jaodan 954 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
𝑝 <s 0s
) |
120 | | breq2 5153 |
. . . . . . . . . . 11
⊢ (𝑞 = 0s → (𝑝 <s 𝑞 ↔ 𝑝 <s 0s )) |
121 | 119, 120 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
(𝑞 = 0s →
𝑝 <s 𝑞)) |
122 | 121 | expimpd 452 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s ) →
𝑝 <s 𝑞)) |
123 | 76, 122 | biimtrid 241 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞)) |
124 | 123 | 3impib 1114 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞) |
125 | 40, 42, 61, 64, 124 | ssltd 27527 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})
<<s { 0s }) |
126 | 37 | abrexex 7953 |
. . . . . . . . 9
⊢ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∈ V |
127 | 35 | abrexex 7953 |
. . . . . . . . 9
⊢ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ∈
V |
128 | 126, 127 | unex 7737 |
. . . . . . . 8
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V |
129 | 128 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V) |
130 | 52 | negscld 27748 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥) ∈ No
) |
131 | 54, 130 | addscld 27700 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥))
∈ No ) |
132 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ (𝑐 ∈ No ↔ (𝑥𝑅 +s (
-us ‘𝑥))
∈ No )) |
133 | 131, 132 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑐 = (𝑥𝑅
+s ( -us ‘𝑥)) → 𝑐 ∈ No
)) |
134 | 133 | rexlimdva 3153 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 𝑐 ∈ No )) |
135 | 134 | abssdv 4066 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
⊆ No ) |
136 | 45, 84 | addscld 27700 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝐿)) ∈ No ) |
137 | | eleq1 2819 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
(𝑑 ∈ No ↔ (𝑥 +s ( -us ‘𝑥𝐿)) ∈
No )) |
138 | 136, 137 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑑 = (𝑥 +s ( -us
‘𝑥𝐿)) → 𝑑 ∈
No )) |
139 | 138 | rexlimdva 3153 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
𝑑 ∈ No )) |
140 | 139 | abssdv 4066 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ⊆
No ) |
141 | 135, 140 | unssd 4187 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ⊆
No ) |
142 | | velsn 4645 |
. . . . . . . . . 10
⊢ (𝑝 ∈ { 0s } ↔
𝑝 = 0s
) |
143 | | elun 4149 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
144 | | vex 3476 |
. . . . . . . . . . . . 13
⊢ 𝑞 ∈ V |
145 | | eqeq1 2734 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ 𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)))) |
146 | 145 | rexbidv 3176 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))) |
147 | 144, 146 | elab 3669 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))) |
148 | | eqeq1 2734 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
149 | 148 | rexbidv 3176 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
150 | 144, 149 | elab 3669 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) |
151 | 147, 150 | orbi12i 911 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
152 | 143, 151 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
153 | 142, 152 | anbi12i 625 |
. . . . . . . . 9
⊢ ((𝑝 ∈ { 0s } ∧
𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) ↔
(𝑝 = 0s ∧
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))))) |
154 | | sltnegim 27749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈
No ∧ 𝑥𝑅 ∈ No ) → (𝑥 <s 𝑥𝑅 → ( -us
‘𝑥𝑅) <s ( -us
‘𝑥))) |
155 | 52, 54, 154 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 → (
-us ‘𝑥𝑅) <s ( -us
‘𝑥))) |
156 | 103, 155 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) <s ( -us
‘𝑥)) |
157 | 55, 130, 54 | sltadd2d 27717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (( -us ‘𝑥𝑅) <s ( -us
‘𝑥) ↔ (𝑥𝑅
+s ( -us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥)))) |
158 | 156, 157 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥))) |
159 | 113, 158 | eqbrtrrd 5173 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 0s <s (𝑥𝑅 +s (
-us ‘𝑥))) |
160 | | breq2 5153 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅
+s ( -us ‘𝑥)))) |
161 | 159, 160 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)) → 0s <s 𝑞)) |
162 | 161 | rexlimdva 3153 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 0s <s 𝑞)) |
163 | 162 | imp 405 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))
→ 0s <s 𝑞) |
164 | 44, 45, 84 | sltadd1d 27718 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿)))) |
165 | 80, 164 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿))) |
166 | 94, 165 | eqbrtrrd 5173 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 0s <s (𝑥 +s ( -us ‘𝑥𝐿))) |
167 | | breq2 5153 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) → (
0s <s 𝑞
↔ 0s <s (𝑥 +s ( -us ‘𝑥𝐿)))) |
168 | 166, 167 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑞 = (𝑥 +s ( -us
‘𝑥𝐿)) → 0s
<s 𝑞)) |
169 | 168 | rexlimdva 3153 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) →
0s <s 𝑞)) |
170 | 169 | imp 405 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
0s <s 𝑞) |
171 | 163, 170 | jaodan 954 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
0s <s 𝑞) |
172 | | breq1 5152 |
. . . . . . . . . . . 12
⊢ (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞)) |
173 | 171, 172 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
(𝑝 = 0s →
𝑝 <s 𝑞)) |
174 | 173 | ex 411 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
(𝑝 = 0s →
𝑝 <s 𝑞))) |
175 | 174 | impcomd 410 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 = 0s
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
𝑝 <s 𝑞)) |
176 | 153, 175 | biimtrid 241 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞)) |
177 | 176 | 3impib 1114 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞) |
178 | 42, 129, 64, 141, 177 | ssltd 27527 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
179 | 125, 178 | cuteq0 27568 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) =
0s ) |
180 | 34, 179 | eqtrid 2782 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s ) |
181 | 18, 180 | eqtrd 2770 |
. . 3
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
0s ) |
182 | 181 | ex 411 |
. 2
⊢ (𝑥 ∈
No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s →
(𝑥 +s (
-us ‘𝑥)) =
0s )) |
183 | 4, 8, 182 | noinds 27665 |
1
⊢ (𝐴 ∈
No → (𝐴
+s ( -us ‘𝐴)) = 0s ) |