| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . 4
⊢ (𝑥 = 𝑥𝑂 → 𝑥 = 𝑥𝑂) |
| 2 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝑥𝑂 → ( -us
‘𝑥) = (
-us ‘𝑥𝑂)) |
| 3 | 1, 2 | oveq12d 7428 |
. . 3
⊢ (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us
‘𝑥)) = (𝑥𝑂
+s ( -us ‘𝑥𝑂))) |
| 4 | 3 | eqeq1d 2738 |
. 2
⊢ (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us
‘𝑥)) = 0s
↔ (𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
)) |
| 5 | | id 22 |
. . . 4
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
| 6 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝐴 → ( -us ‘𝑥) = ( -us
‘𝐴)) |
| 7 | 5, 6 | oveq12d 7428 |
. . 3
⊢ (𝑥 = 𝐴 → (𝑥 +s ( -us ‘𝑥)) = (𝐴 +s ( -us ‘𝐴))) |
| 8 | 7 | eqeq1d 2738 |
. 2
⊢ (𝑥 = 𝐴 → ((𝑥 +s ( -us ‘𝑥)) = 0s ↔ (𝐴 +s ( -us
‘𝐴)) = 0s
)) |
| 9 | | lltropt 27841 |
. . . . . 6
⊢ ( L
‘𝑥) <<s ( R
‘𝑥) |
| 10 | 9 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( L ‘𝑥)
<<s ( R ‘𝑥)) |
| 11 | | negscut2 28003 |
. . . . . 6
⊢ (𝑥 ∈
No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) |
| 13 | | lrcut 27872 |
. . . . . . 7
⊢ (𝑥 ∈
No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (( L ‘𝑥) |s (
R ‘𝑥)) = 𝑥) |
| 15 | 14 | eqcomd 2742 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ 𝑥 = (( L
‘𝑥) |s ( R
‘𝑥))) |
| 16 | | negsval 27988 |
. . . . . 6
⊢ (𝑥 ∈
No → ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) |
| 18 | 10, 12, 15, 17 | addsunif 27966 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
(({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}))) |
| 19 | | negsfn 27986 |
. . . . . . . . 9
⊢
-us Fn No |
| 20 | | rightssno 27850 |
. . . . . . . . 9
⊢ ( R
‘𝑥) ⊆ No |
| 21 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑥 +s 𝑝) = (𝑥 +s ( -us ‘𝑥𝑅))) |
| 22 | 21 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑝 = ( -us ‘𝑥𝑅) →
(𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 23 | 22 | rexima 7235 |
. . . . . . . . 9
⊢ ((
-us Fn No ∧ ( R ‘𝑥) ⊆
No ) → (∃𝑝 ∈ ( -us “ ( R
‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 24 | 19, 20, 23 | mp2an 692 |
. . . . . . . 8
⊢
(∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))) |
| 25 | 24 | abbii 2803 |
. . . . . . 7
⊢ {𝑏 ∣ ∃𝑝 ∈ ( -us “
( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} |
| 26 | 25 | uneq2i 4145 |
. . . . . 6
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |
| 27 | | leftssno 27849 |
. . . . . . . . 9
⊢ ( L
‘𝑥) ⊆ No |
| 28 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑥 +s 𝑞) = (𝑥 +s ( -us ‘𝑥𝐿))) |
| 29 | 28 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑞 = ( -us ‘𝑥𝐿) →
(𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 30 | 29 | rexima 7235 |
. . . . . . . . 9
⊢ ((
-us Fn No ∧ ( L ‘𝑥) ⊆
No ) → (∃𝑞 ∈ ( -us “ ( L
‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 31 | 19, 27, 30 | mp2an 692 |
. . . . . . . 8
⊢
(∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))) |
| 32 | 31 | abbii 2803 |
. . . . . . 7
⊢ {𝑑 ∣ ∃𝑞 ∈ ( -us “
( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} |
| 33 | 32 | uneq2i 4145 |
. . . . . 6
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) |
| 34 | 26, 33 | oveq12i 7422 |
. . . . 5
⊢ (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
| 35 | | fvex 6894 |
. . . . . . . . . 10
⊢ ( L
‘𝑥) ∈
V |
| 36 | 35 | abrexex 7966 |
. . . . . . . . 9
⊢ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∈ V |
| 37 | | fvex 6894 |
. . . . . . . . . 10
⊢ ( R
‘𝑥) ∈
V |
| 38 | 37 | abrexex 7966 |
. . . . . . . . 9
⊢ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ∈
V |
| 39 | 36, 38 | unex 7743 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V |
| 40 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∈
V) |
| 41 | | snex 5411 |
. . . . . . . 8
⊢ {
0s } ∈ V |
| 42 | 41 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ∈ V) |
| 43 | 27 | sseli 3959 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈
No ) |
| 44 | 43 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈ No ) |
| 45 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥 ∈ No ) |
| 46 | 45 | negscld 28000 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) ∈ No
) |
| 47 | 44, 46 | addscld 27944 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
∈ No ) |
| 48 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑎 ∈ No ↔ (𝑥𝐿 +s (
-us ‘𝑥))
∈ No )) |
| 49 | 47, 48 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑎 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑎 ∈ No
)) |
| 50 | 49 | rexlimdva 3142 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑎 ∈ No )) |
| 51 | 50 | abssdv 4048 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
⊆ No ) |
| 52 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 ∈ No ) |
| 53 | 20 | sseli 3959 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈
No ) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈ No ) |
| 55 | 54 | negscld 28000 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) ∈ No ) |
| 56 | 52, 55 | addscld 27944 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) ∈ No ) |
| 57 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑏 ∈ No ↔ (𝑥 +s ( -us ‘𝑥𝑅)) ∈
No )) |
| 58 | 56, 57 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑏 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑏 ∈
No )) |
| 59 | 58 | rexlimdva 3142 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑏 ∈ No )) |
| 60 | 59 | abssdv 4048 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ⊆
No ) |
| 61 | 51, 60 | unssd 4172 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ⊆
No ) |
| 62 | | 0sno 27795 |
. . . . . . . 8
⊢
0s ∈ No |
| 63 | | snssi 4789 |
. . . . . . . 8
⊢ (
0s ∈ No → { 0s }
⊆ No ) |
| 64 | 62, 63 | mp1i 13 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } ⊆ No
) |
| 65 | | elun 4133 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})) |
| 66 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑝 ∈ V |
| 67 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ 𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)))) |
| 68 | 67 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))) |
| 69 | 66, 68 | elab 3663 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))) |
| 70 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 71 | 70 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅)) ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 72 | 66, 71 | elab 3663 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))} ↔
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) |
| 73 | 69, 72 | orbi12i 914 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 74 | 65, 73 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ↔
(∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) |
| 75 | | velsn 4622 |
. . . . . . . . . 10
⊢ (𝑞 ∈ { 0s } ↔
𝑞 = 0s
) |
| 76 | 74, 75 | anbi12i 628 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s
)) |
| 77 | | leftlt 27832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 <s 𝑥) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 <s 𝑥) |
| 79 | | sltnegim 28001 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥𝐿 ∈
No ∧ 𝑥 ∈ No )
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) |
| 80 | 44, 45, 79 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 → ( -us ‘𝑥) <s ( -us
‘𝑥𝐿))) |
| 81 | 78, 80 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥) <s ( -us ‘𝑥𝐿)) |
| 82 | 44 | negscld 28000 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ( -us ‘𝑥𝐿) ∈ No ) |
| 83 | 46, 82, 44 | sltadd2d 27961 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (( -us ‘𝑥) <s ( -us ‘𝑥𝐿) ↔
(𝑥𝐿
+s ( -us ‘𝑥)) <s (𝑥𝐿 +s (
-us ‘𝑥𝐿)))) |
| 84 | 81, 83 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s (𝑥𝐿 +s (
-us ‘𝑥𝐿))) |
| 85 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
𝑥𝑂 =
𝑥𝐿) |
| 86 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝐿)) |
| 87 | 85, 86 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝐿 +s (
-us ‘𝑥𝐿))) |
| 88 | 87 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝐿
+s ( -us ‘𝑥𝐿)) = 0s
)) |
| 89 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) |
| 90 | | elun1 4162 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 ∈ ( L
‘𝑥) → 𝑥𝐿 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) |
| 91 | 90 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
| 92 | 88, 89, 91 | rspcdva 3607 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) = 0s
) |
| 93 | 84, 92 | breqtrd 5150 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s ) |
| 94 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ (𝑝 <s
0s ↔ (𝑥𝐿 +s (
-us ‘𝑥))
<s 0s )) |
| 95 | 93, 94 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑝 = (𝑥𝐿
+s ( -us ‘𝑥)) → 𝑝 <s 0s )) |
| 96 | 95 | rexlimdva 3142 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
→ 𝑝 <s
0s )) |
| 97 | 96 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥)))
→ 𝑝 <s
0s ) |
| 98 | | rightgt 27833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥 <s 𝑥𝑅) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥 <s 𝑥𝑅) |
| 100 | 52, 54, 55 | sltadd1d 27962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 ↔
(𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅)))) |
| 101 | 99, 100 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥𝑅))) |
| 102 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
𝑥𝑂 =
𝑥𝑅) |
| 103 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 → (
-us ‘𝑥𝑂) = ( -us
‘𝑥𝑅)) |
| 104 | 102, 103 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
+s ( -us ‘𝑥𝑂)) = (𝑥𝑅 +s (
-us ‘𝑥𝑅))) |
| 105 | 104 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
+s ( -us ‘𝑥𝑂)) = 0s ↔
(𝑥𝑅
+s ( -us ‘𝑥𝑅)) = 0s
)) |
| 106 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s
) |
| 107 | | elun2 4163 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝑥) → 𝑥𝑅 ∈ (( L
‘𝑥) ∪ ( R
‘𝑥))) |
| 108 | 107 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))) |
| 109 | 105, 106,
108 | rspcdva 3607 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) = 0s
) |
| 110 | 101, 109 | breqtrd 5150 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
) |
| 111 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
(𝑝 <s 0s
↔ (𝑥 +s (
-us ‘𝑥𝑅)) <s 0s
)) |
| 112 | 110, 111 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑝 = (𝑥 +s ( -us
‘𝑥𝑅)) → 𝑝 <s 0s
)) |
| 113 | 112 | rexlimdva 3142 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)) →
𝑝 <s 0s
)) |
| 114 | 113 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) →
𝑝 <s 0s
) |
| 115 | 97, 114 | jaodan 959 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
𝑝 <s 0s
) |
| 116 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑞 = 0s → (𝑝 <s 𝑞 ↔ 𝑝 <s 0s )) |
| 117 | 115, 116 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅)))) →
(𝑞 = 0s →
𝑝 <s 𝑞)) |
| 118 | 117 | expimpd 453 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s (
-us ‘𝑥))
∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us ‘𝑥𝑅))) ∧
𝑞 = 0s ) →
𝑝 <s 𝑞)) |
| 119 | 76, 118 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞)) |
| 120 | 119 | 3impib 1116 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) ∧
𝑞 ∈ { 0s })
→ 𝑝 <s 𝑞) |
| 121 | 40, 42, 61, 64, 120 | ssltd 27760 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))})
<<s { 0s }) |
| 122 | 37 | abrexex 7966 |
. . . . . . . . 9
⊢ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∈ V |
| 123 | 35 | abrexex 7966 |
. . . . . . . . 9
⊢ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ∈
V |
| 124 | 122, 123 | unex 7743 |
. . . . . . . 8
⊢ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V |
| 125 | 124 | a1i 11 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ∈
V) |
| 126 | 52 | negscld 28000 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥) ∈ No
) |
| 127 | 54, 126 | addscld 27944 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥))
∈ No ) |
| 128 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ (𝑐 ∈ No ↔ (𝑥𝑅 +s (
-us ‘𝑥))
∈ No )) |
| 129 | 127, 128 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑐 = (𝑥𝑅
+s ( -us ‘𝑥)) → 𝑐 ∈ No
)) |
| 130 | 129 | rexlimdva 3142 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 𝑐 ∈ No )) |
| 131 | 130 | abssdv 4048 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
⊆ No ) |
| 132 | 45, 82 | addscld 27944 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥 +s (
-us ‘𝑥𝐿)) ∈ No ) |
| 133 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
(𝑑 ∈ No ↔ (𝑥 +s ( -us ‘𝑥𝐿)) ∈
No )) |
| 134 | 132, 133 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑑 = (𝑥 +s ( -us
‘𝑥𝐿)) → 𝑑 ∈
No )) |
| 135 | 134 | rexlimdva 3142 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) →
𝑑 ∈ No )) |
| 136 | 135 | abssdv 4048 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ⊆
No ) |
| 137 | 131, 136 | unssd 4172 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ⊆
No ) |
| 138 | | velsn 4622 |
. . . . . . . . . 10
⊢ (𝑝 ∈ { 0s } ↔
𝑝 = 0s
) |
| 139 | | elun 4133 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
| 140 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑞 ∈ V |
| 141 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ 𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)))) |
| 142 | 141 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))) |
| 143 | 140, 142 | elab 3663 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))) |
| 144 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 145 | 144 | rexbidv 3165 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿)) ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 146 | 140, 145 | elab 3663 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))} ↔
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) |
| 147 | 143, 146 | orbi12i 914 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L
‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 148 | 139, 147 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))}) ↔
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 149 | 138, 148 | anbi12i 628 |
. . . . . . . . 9
⊢ ((𝑝 ∈ { 0s } ∧
𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) ↔
(𝑝 = 0s ∧
(∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))))) |
| 150 | | sltnegim 28001 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈
No ∧ 𝑥𝑅 ∈ No ) → (𝑥 <s 𝑥𝑅 → ( -us
‘𝑥𝑅) <s ( -us
‘𝑥))) |
| 151 | 52, 54, 150 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥 <s 𝑥𝑅 → (
-us ‘𝑥𝑅) <s ( -us
‘𝑥))) |
| 152 | 99, 151 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ ( -us ‘𝑥𝑅) <s ( -us
‘𝑥)) |
| 153 | 55, 126, 54 | sltadd2d 27961 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (( -us ‘𝑥𝑅) <s ( -us
‘𝑥) ↔ (𝑥𝑅
+s ( -us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥)))) |
| 154 | 152, 153 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑥𝑅 +s (
-us ‘𝑥𝑅)) <s (𝑥𝑅
+s ( -us ‘𝑥))) |
| 155 | 109, 154 | eqbrtrrd 5148 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ 0s <s (𝑥𝑅 +s (
-us ‘𝑥))) |
| 156 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅
+s ( -us ‘𝑥)))) |
| 157 | 155, 156 | syl5ibrcom 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝑅
∈ ( R ‘𝑥))
→ (𝑞 = (𝑥𝑅
+s ( -us ‘𝑥)) → 0s <s 𝑞)) |
| 158 | 157 | rexlimdva 3142 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
→ 0s <s 𝑞)) |
| 159 | 158 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥)))
→ 0s <s 𝑞) |
| 160 | 44, 45, 82 | sltadd1d 27962 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿)))) |
| 161 | 78, 160 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑥𝐿 +s (
-us ‘𝑥𝐿)) <s (𝑥 +s ( -us
‘𝑥𝐿))) |
| 162 | 92, 161 | eqbrtrrd 5148 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ 0s <s (𝑥 +s ( -us ‘𝑥𝐿))) |
| 163 | | breq2 5128 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) → (
0s <s 𝑞
↔ 0s <s (𝑥 +s ( -us ‘𝑥𝐿)))) |
| 164 | 162, 163 | syl5ibrcom 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑥𝐿
∈ ( L ‘𝑥))
→ (𝑞 = (𝑥 +s ( -us
‘𝑥𝐿)) → 0s
<s 𝑞)) |
| 165 | 164 | rexlimdva 3142 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)) →
0s <s 𝑞)) |
| 166 | 165 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
0s <s 𝑞) |
| 167 | 159, 166 | jaodan 959 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
0s <s 𝑞) |
| 168 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞)) |
| 169 | 167, 168 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
(𝑝 = 0s →
𝑝 <s 𝑞)) |
| 170 | 169 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿))) →
(𝑝 = 0s →
𝑝 <s 𝑞))) |
| 171 | 170 | impcomd 411 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 = 0s
∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s (
-us ‘𝑥))
∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us ‘𝑥𝐿)))) →
𝑝 <s 𝑞)) |
| 172 | 149, 171 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ ((𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞)) |
| 173 | 172 | 3impib 1116 |
. . . . . . 7
⊢ (((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
∧ 𝑝 ∈ {
0s } ∧ 𝑞
∈ ({𝑐 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) →
𝑝 <s 𝑞) |
| 174 | 42, 125, 64, 137, 173 | ssltd 27760 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) |
| 175 | 121, 174 | cuteq0 27801 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us ‘𝑥𝑅))}) |s
({𝑐 ∣ ∃𝑥𝑅 ∈ ( R
‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us ‘𝑥𝐿))})) =
0s ) |
| 176 | 34, 175 | eqtrid 2783 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (({𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s (
-us ‘𝑥))}
∪ {𝑏 ∣
∃𝑝 ∈ (
-us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s (
-us ‘𝑥))}
∪ {𝑑 ∣
∃𝑞 ∈ (
-us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s ) |
| 177 | 18, 176 | eqtrd 2771 |
. . 3
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s )
→ (𝑥 +s (
-us ‘𝑥)) =
0s ) |
| 178 | 177 | ex 412 |
. 2
⊢ (𝑥 ∈
No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s (
-us ‘𝑥𝑂)) = 0s →
(𝑥 +s (
-us ‘𝑥)) =
0s )) |
| 179 | 4, 8, 178 | noinds 27909 |
1
⊢ (𝐴 ∈
No → (𝐴
+s ( -us ‘𝐴)) = 0s ) |