MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsid Structured version   Visualization version   GIF version

Theorem negsid 28091
Description: Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negsid (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )

Proof of Theorem negsid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑥 𝑥𝐿 𝑥𝑅 𝑥𝑂 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂)
2 fveq2 6920 . . . 4 (𝑥 = 𝑥𝑂 → ( -us𝑥) = ( -us𝑥𝑂))
31, 2oveq12d 7466 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us𝑥)) = (𝑥𝑂 +s ( -us𝑥𝑂)))
43eqeq1d 2742 . 2 (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ))
5 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
6 fveq2 6920 . . . 4 (𝑥 = 𝐴 → ( -us𝑥) = ( -us𝐴))
75, 6oveq12d 7466 . . 3 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑥)) = (𝐴 +s ( -us𝐴)))
87eqeq1d 2742 . 2 (𝑥 = 𝐴 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝐴 +s ( -us𝐴)) = 0s ))
9 lltropt 27929 . . . . . 6 ( L ‘𝑥) <<s ( R ‘𝑥)
109a1i 11 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( L ‘𝑥) <<s ( R ‘𝑥))
11 negscut2 28090 . . . . . 6 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
1211adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
13 lrcut 27959 . . . . . . 7 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1413adantr 480 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1514eqcomd 2746 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
16 negsval 28075 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1716adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1810, 12, 15, 17addsunif 28053 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})))
19 negsfn 28073 . . . . . . . . 9 -us Fn No
20 rightssno 27938 . . . . . . . . 9 ( R ‘𝑥) ⊆ No
21 oveq2 7456 . . . . . . . . . . 11 (𝑝 = ( -us𝑥𝑅) → (𝑥 +s 𝑝) = (𝑥 +s ( -us𝑥𝑅)))
2221eqeq2d 2751 . . . . . . . . . 10 (𝑝 = ( -us𝑥𝑅) → (𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2322rexima 7275 . . . . . . . . 9 (( -us Fn No ∧ ( R ‘𝑥) ⊆ No ) → (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2419, 20, 23mp2an 691 . . . . . . . 8 (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)))
2524abbii 2812 . . . . . . 7 {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}
2625uneq2i 4188 . . . . . 6 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))})
27 leftssno 27937 . . . . . . . . 9 ( L ‘𝑥) ⊆ No
28 oveq2 7456 . . . . . . . . . . 11 (𝑞 = ( -us𝑥𝐿) → (𝑥 +s 𝑞) = (𝑥 +s ( -us𝑥𝐿)))
2928eqeq2d 2751 . . . . . . . . . 10 (𝑞 = ( -us𝑥𝐿) → (𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3029rexima 7275 . . . . . . . . 9 (( -us Fn No ∧ ( L ‘𝑥) ⊆ No ) → (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3119, 27, 30mp2an 691 . . . . . . . 8 (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)))
3231abbii 2812 . . . . . . 7 {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}
3332uneq2i 4188 . . . . . 6 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})
3426, 33oveq12i 7460 . . . . 5 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
35 fvex 6933 . . . . . . . . . 10 ( L ‘𝑥) ∈ V
3635abrexex 8003 . . . . . . . . 9 {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∈ V
37 fvex 6933 . . . . . . . . . 10 ( R ‘𝑥) ∈ V
3837abrexex 8003 . . . . . . . . 9 {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ∈ V
3936, 38unex 7779 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V
4039a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V)
41 snex 5451 . . . . . . . 8 { 0s } ∈ V
4241a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ∈ V)
4327sseli 4004 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 No )
4443adantl 481 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 No )
45 simpll 766 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥 No )
4645negscld 28087 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) ∈ No )
4744, 46addscld 28031 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) ∈ No )
48 eleq1 2832 . . . . . . . . . . 11 (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → (𝑎 No ↔ (𝑥𝐿 +s ( -us𝑥)) ∈ No ))
4947, 48syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5049rexlimdva 3161 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5150abssdv 4091 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ⊆ No )
52 simpll 766 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 No )
5320sseli 4004 . . . . . . . . . . . . . 14 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 No )
5453adantl 481 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 No )
5554negscld 28087 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) ∈ No )
5652, 55addscld 28031 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) ∈ No )
57 eleq1 2832 . . . . . . . . . . 11 (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → (𝑏 No ↔ (𝑥 +s ( -us𝑥𝑅)) ∈ No ))
5856, 57syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
5958rexlimdva 3161 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
6059abssdv 4091 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ⊆ No )
6151, 60unssd 4215 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ⊆ No )
62 0sno 27889 . . . . . . . 8 0s No
63 snssi 4833 . . . . . . . 8 ( 0s No → { 0s } ⊆ No )
6462, 63mp1i 13 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ⊆ No )
65 elun 4176 . . . . . . . . . . 11 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}))
66 vex 3492 . . . . . . . . . . . . 13 𝑝 ∈ V
67 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ 𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6867rexbidv 3185 . . . . . . . . . . . . 13 (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6966, 68elab 3694 . . . . . . . . . . . 12 (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)))
70 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ 𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7170rexbidv 3185 . . . . . . . . . . . . 13 (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7266, 71elab 3694 . . . . . . . . . . . 12 (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))
7369, 72orbi12i 913 . . . . . . . . . . 11 ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7465, 73bitri 275 . . . . . . . . . 10 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
75 velsn 4664 . . . . . . . . . 10 (𝑞 ∈ { 0s } ↔ 𝑞 = 0s )
7674, 75anbi12i 627 . . . . . . . . 9 ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) ↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ))
77 leftval 27920 . . . . . . . . . . . . . . . . . . . . 21 ( L ‘𝑥) = {𝑥𝐿 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥𝐿 <s 𝑥}
7877reqabi 3467 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐿 ∈ ( L ‘𝑥) ↔ (𝑥𝐿 ∈ ( O ‘( bday 𝑥)) ∧ 𝑥𝐿 <s 𝑥))
7978simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 <s 𝑥)
8079adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 <s 𝑥)
81 sltnegim 28088 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐿 No 𝑥 No ) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8244, 45, 81syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8380, 82mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) <s ( -us𝑥𝐿))
8444negscld 28087 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥𝐿) ∈ No )
8546, 84, 44sltadd2d 28048 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (( -us𝑥) <s ( -us𝑥𝐿) ↔ (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿))))
8683, 85mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿)))
87 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿𝑥𝑂 = 𝑥𝐿)
88 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( -us𝑥𝑂) = ( -us𝑥𝐿))
8987, 88oveq12d 7466 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝐿 +s ( -us𝑥𝐿)))
9089eqeq1d 2742 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s ))
91 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
92 elun1 4205 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9392adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9490, 91, 93rspcdva 3636 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s )
9586, 94breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s 0s )
96 breq1 5169 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → (𝑝 <s 0s ↔ (𝑥𝐿 +s ( -us𝑥)) <s 0s ))
9795, 96syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9897rexlimdva 3161 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9998imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))) → 𝑝 <s 0s )
100 rightval 27921 . . . . . . . . . . . . . . . . . . . 20 ( R ‘𝑥) = {𝑥𝑅 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑥𝑅}
101100reqabi 3467 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝑥) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝑥)) ∧ 𝑥 <s 𝑥𝑅))
102101simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥 <s 𝑥𝑅)
103102adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 <s 𝑥𝑅)
10452, 54, 55sltadd1d 28049 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 ↔ (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅))))
105103, 104mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅)))
106 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅𝑥𝑂 = 𝑥𝑅)
107 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( -us𝑥𝑂) = ( -us𝑥𝑅))
108106, 107oveq12d 7466 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝑅 +s ( -us𝑥𝑅)))
109108eqeq1d 2742 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s ))
110 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
111 elun2 4206 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
112111adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
113109, 110, 112rspcdva 3636 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s )
114105, 113breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s 0s )
115 breq1 5169 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → (𝑝 <s 0s ↔ (𝑥 +s ( -us𝑥𝑅)) <s 0s ))
116114, 115syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
117116rexlimdva 3161 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
118117imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) → 𝑝 <s 0s )
11999, 118jaodan 958 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → 𝑝 <s 0s )
120 breq2 5170 . . . . . . . . . . 11 (𝑞 = 0s → (𝑝 <s 𝑞𝑝 <s 0s ))
121119, 120syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → (𝑞 = 0s𝑝 <s 𝑞))
122121expimpd 453 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞))
12376, 122biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞))
1241233impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞)
12540, 42, 61, 64, 124ssltd 27854 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) <<s { 0s })
12637abrexex 8003 . . . . . . . . 9 {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∈ V
12735abrexex 8003 . . . . . . . . 9 {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ∈ V
128126, 127unex 7779 . . . . . . . 8 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V
129128a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V)
13052negscld 28087 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥) ∈ No )
13154, 130addscld 28031 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥)) ∈ No )
132 eleq1 2832 . . . . . . . . . . 11 (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → (𝑐 No ↔ (𝑥𝑅 +s ( -us𝑥)) ∈ No ))
133131, 132syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
134133rexlimdva 3161 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
135134abssdv 4091 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ⊆ No )
13645, 84addscld 28031 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥 +s ( -us𝑥𝐿)) ∈ No )
137 eleq1 2832 . . . . . . . . . . 11 (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → (𝑑 No ↔ (𝑥 +s ( -us𝑥𝐿)) ∈ No ))
138136, 137syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
139138rexlimdva 3161 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
140139abssdv 4091 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ⊆ No )
141135, 140unssd 4215 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ⊆ No )
142 velsn 4664 . . . . . . . . . 10 (𝑝 ∈ { 0s } ↔ 𝑝 = 0s )
143 elun 4176 . . . . . . . . . . 11 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
144 vex 3492 . . . . . . . . . . . . 13 𝑞 ∈ V
145 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ 𝑞 = (𝑥𝑅 +s ( -us𝑥))))
146145rexbidv 3185 . . . . . . . . . . . . 13 (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))))
147144, 146elab 3694 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)))
148 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ 𝑞 = (𝑥 +s ( -us𝑥𝐿))))
149148rexbidv 3185 . . . . . . . . . . . . 13 (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
150144, 149elab 3694 . . . . . . . . . . . 12 (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))
151147, 150orbi12i 913 . . . . . . . . . . 11 ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
152143, 151bitri 275 . . . . . . . . . 10 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
153142, 152anbi12i 627 . . . . . . . . 9 ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) ↔ (𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))))
154 sltnegim 28088 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 No 𝑥𝑅 No ) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
15552, 54, 154syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
156103, 155mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) <s ( -us𝑥))
15755, 130, 54sltadd2d 28048 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (( -us𝑥𝑅) <s ( -us𝑥) ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥))))
158156, 157mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥)))
159113, 158eqbrtrrd 5190 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 0s <s (𝑥𝑅 +s ( -us𝑥)))
160 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅 +s ( -us𝑥))))
161159, 160syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
162161rexlimdva 3161 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
163162imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))) → 0s <s 𝑞)
16444, 45, 84sltadd1d 28049 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿))))
16580, 164mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿)))
16694, 165eqbrtrrd 5190 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 0s <s (𝑥 +s ( -us𝑥𝐿)))
167 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥 +s ( -us𝑥𝐿))))
168166, 167syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
169168rexlimdva 3161 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
170169imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → 0s <s 𝑞)
171163, 170jaodan 958 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 0s <s 𝑞)
172 breq1 5169 . . . . . . . . . . . 12 (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞))
173171, 172syl5ibrcom 247 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → (𝑝 = 0s𝑝 <s 𝑞))
174173ex 412 . . . . . . . . . 10 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → (𝑝 = 0s𝑝 <s 𝑞)))
175174impcomd 411 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 𝑝 <s 𝑞))
176153, 175biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞))
1771763impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞)
17842, 129, 64, 141, 177ssltd 27854 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
179125, 178cuteq0 27895 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) = 0s )
18034, 179eqtrid 2792 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s )
18118, 180eqtrd 2780 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = 0s )
182181ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s → (𝑥 +s ( -us𝑥)) = 0s ))
1834, 8, 182noinds 27996 1 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cima 5703   Fn wfn 6568  cfv 6573  (class class class)co 7448   No csur 27702   <s cslt 27703   bday cbday 27704   <<s csslt 27843   |s cscut 27845   0s c0s 27885   O cold 27900   L cleft 27902   R cright 27903   +s cadds 28010   -us cnegs 28069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071
This theorem is referenced by:  negsidd  28092  negsex  28093  negnegs  28094  negsdi  28100  subsid  28117  subadds  28118
  Copyright terms: Public domain W3C validator