MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsid Structured version   Visualization version   GIF version

Theorem negsid 28074
Description: Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negsid (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )

Proof of Theorem negsid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑥 𝑥𝐿 𝑥𝑅 𝑥𝑂 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂)
2 fveq2 6905 . . . 4 (𝑥 = 𝑥𝑂 → ( -us𝑥) = ( -us𝑥𝑂))
31, 2oveq12d 7450 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 +s ( -us𝑥)) = (𝑥𝑂 +s ( -us𝑥𝑂)))
43eqeq1d 2738 . 2 (𝑥 = 𝑥𝑂 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ))
5 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
6 fveq2 6905 . . . 4 (𝑥 = 𝐴 → ( -us𝑥) = ( -us𝐴))
75, 6oveq12d 7450 . . 3 (𝑥 = 𝐴 → (𝑥 +s ( -us𝑥)) = (𝐴 +s ( -us𝐴)))
87eqeq1d 2738 . 2 (𝑥 = 𝐴 → ((𝑥 +s ( -us𝑥)) = 0s ↔ (𝐴 +s ( -us𝐴)) = 0s ))
9 lltropt 27912 . . . . . 6 ( L ‘𝑥) <<s ( R ‘𝑥)
109a1i 11 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( L ‘𝑥) <<s ( R ‘𝑥))
11 negscut2 28073 . . . . . 6 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
1211adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
13 lrcut 27942 . . . . . . 7 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1413adantr 480 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
1514eqcomd 2742 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
16 negsval 28058 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1716adantr 480 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
1810, 12, 15, 17addsunif 28036 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})))
19 negsfn 28056 . . . . . . . . 9 -us Fn No
20 rightssno 27921 . . . . . . . . 9 ( R ‘𝑥) ⊆ No
21 oveq2 7440 . . . . . . . . . . 11 (𝑝 = ( -us𝑥𝑅) → (𝑥 +s 𝑝) = (𝑥 +s ( -us𝑥𝑅)))
2221eqeq2d 2747 . . . . . . . . . 10 (𝑝 = ( -us𝑥𝑅) → (𝑏 = (𝑥 +s 𝑝) ↔ 𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2322rexima 7259 . . . . . . . . 9 (( -us Fn No ∧ ( R ‘𝑥) ⊆ No ) → (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))))
2419, 20, 23mp2an 692 . . . . . . . 8 (∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)))
2524abbii 2808 . . . . . . 7 {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)} = {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}
2625uneq2i 4164 . . . . . 6 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))})
27 leftssno 27920 . . . . . . . . 9 ( L ‘𝑥) ⊆ No
28 oveq2 7440 . . . . . . . . . . 11 (𝑞 = ( -us𝑥𝐿) → (𝑥 +s 𝑞) = (𝑥 +s ( -us𝑥𝐿)))
2928eqeq2d 2747 . . . . . . . . . 10 (𝑞 = ( -us𝑥𝐿) → (𝑑 = (𝑥 +s 𝑞) ↔ 𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3029rexima 7259 . . . . . . . . 9 (( -us Fn No ∧ ( L ‘𝑥) ⊆ No ) → (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))))
3119, 27, 30mp2an 692 . . . . . . . 8 (∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)))
3231abbii 2808 . . . . . . 7 {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)} = {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}
3332uneq2i 4164 . . . . . 6 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)}) = ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})
3426, 33oveq12i 7444 . . . . 5 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
35 fvex 6918 . . . . . . . . . 10 ( L ‘𝑥) ∈ V
3635abrexex 7988 . . . . . . . . 9 {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∈ V
37 fvex 6918 . . . . . . . . . 10 ( R ‘𝑥) ∈ V
3837abrexex 7988 . . . . . . . . 9 {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ∈ V
3936, 38unex 7765 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V
4039a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∈ V)
41 snex 5435 . . . . . . . 8 { 0s } ∈ V
4241a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ∈ V)
4327sseli 3978 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 No )
4443adantl 481 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 No )
45 simpll 766 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥 No )
4645negscld 28070 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) ∈ No )
4744, 46addscld 28014 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) ∈ No )
48 eleq1 2828 . . . . . . . . . . 11 (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → (𝑎 No ↔ (𝑥𝐿 +s ( -us𝑥)) ∈ No ))
4947, 48syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5049rexlimdva 3154 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) → 𝑎 No ))
5150abssdv 4067 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ⊆ No )
52 simpll 766 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 No )
5320sseli 3978 . . . . . . . . . . . . . 14 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 No )
5453adantl 481 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 No )
5554negscld 28070 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) ∈ No )
5652, 55addscld 28014 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) ∈ No )
57 eleq1 2828 . . . . . . . . . . 11 (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → (𝑏 No ↔ (𝑥 +s ( -us𝑥𝑅)) ∈ No ))
5856, 57syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
5958rexlimdva 3154 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) → 𝑏 No ))
6059abssdv 4067 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ⊆ No )
6151, 60unssd 4191 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ⊆ No )
62 0sno 27872 . . . . . . . 8 0s No
63 snssi 4807 . . . . . . . 8 ( 0s No → { 0s } ⊆ No )
6462, 63mp1i 13 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } ⊆ No )
65 elun 4152 . . . . . . . . . . 11 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}))
66 vex 3483 . . . . . . . . . . . . 13 𝑝 ∈ V
67 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑎 = 𝑝 → (𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ 𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6867rexbidv 3178 . . . . . . . . . . . . 13 (𝑎 = 𝑝 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))))
6966, 68elab 3678 . . . . . . . . . . . 12 (𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)))
70 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑏 = 𝑝 → (𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ 𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7170rexbidv 3178 . . . . . . . . . . . . 13 (𝑏 = 𝑝 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7266, 71elab 3678 . . . . . . . . . . . 12 (𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))
7369, 72orbi12i 914 . . . . . . . . . . 11 ((𝑝 ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∨ 𝑝 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
7465, 73bitri 275 . . . . . . . . . 10 (𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ↔ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))))
75 velsn 4641 . . . . . . . . . 10 (𝑞 ∈ { 0s } ↔ 𝑞 = 0s )
7674, 75anbi12i 628 . . . . . . . . 9 ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) ↔ ((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ))
77 leftval 27903 . . . . . . . . . . . . . . . . . . . . 21 ( L ‘𝑥) = {𝑥𝐿 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥𝐿 <s 𝑥}
7877reqabi 3459 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐿 ∈ ( L ‘𝑥) ↔ (𝑥𝐿 ∈ ( O ‘( bday 𝑥)) ∧ 𝑥𝐿 <s 𝑥))
7978simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 <s 𝑥)
8079adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 <s 𝑥)
81 sltnegim 28071 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐿 No 𝑥 No ) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8244, 45, 81syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 → ( -us𝑥) <s ( -us𝑥𝐿)))
8380, 82mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥) <s ( -us𝑥𝐿))
8444negscld 28070 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ( -us𝑥𝐿) ∈ No )
8546, 84, 44sltadd2d 28031 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (( -us𝑥) <s ( -us𝑥𝐿) ↔ (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿))))
8683, 85mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s (𝑥𝐿 +s ( -us𝑥𝐿)))
87 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿𝑥𝑂 = 𝑥𝐿)
88 fveq2 6905 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → ( -us𝑥𝑂) = ( -us𝑥𝐿))
8987, 88oveq12d 7450 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝐿 +s ( -us𝑥𝐿)))
9089eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s ))
91 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
92 elun1 4181 . . . . . . . . . . . . . . . . . 18 (𝑥𝐿 ∈ ( L ‘𝑥) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9392adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 𝑥𝐿 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
9490, 91, 93rspcdva 3622 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) = 0s )
9586, 94breqtrd 5168 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥)) <s 0s )
96 breq1 5145 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → (𝑝 <s 0s ↔ (𝑥𝐿 +s ( -us𝑥)) <s 0s ))
9795, 96syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9897rexlimdva 3154 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) → 𝑝 <s 0s ))
9998imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥))) → 𝑝 <s 0s )
100 rightval 27904 . . . . . . . . . . . . . . . . . . . 20 ( R ‘𝑥) = {𝑥𝑅 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑥𝑅}
101100reqabi 3459 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑅 ∈ ( R ‘𝑥) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝑥)) ∧ 𝑥 <s 𝑥𝑅))
102101simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥 <s 𝑥𝑅)
103102adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥 <s 𝑥𝑅)
10452, 54, 55sltadd1d 28032 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 ↔ (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅))))
105103, 104mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥𝑅)))
106 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅𝑥𝑂 = 𝑥𝑅)
107 fveq2 6905 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → ( -us𝑥𝑂) = ( -us𝑥𝑅))
108106, 107oveq12d 7450 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 +s ( -us𝑥𝑂)) = (𝑥𝑅 +s ( -us𝑥𝑅)))
109108eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s ))
110 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s )
111 elun2 4182 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝑥) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
112111adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 𝑥𝑅 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥)))
113109, 110, 112rspcdva 3622 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) = 0s )
114105, 113breqtrd 5168 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 +s ( -us𝑥𝑅)) <s 0s )
115 breq1 5145 . . . . . . . . . . . . . . 15 (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → (𝑝 <s 0s ↔ (𝑥 +s ( -us𝑥𝑅)) <s 0s ))
116114, 115syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
117116rexlimdva 3154 . . . . . . . . . . . . 13 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)) → 𝑝 <s 0s ))
118117imp 406 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) → 𝑝 <s 0s )
11999, 118jaodan 959 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → 𝑝 <s 0s )
120 breq2 5146 . . . . . . . . . . 11 (𝑞 = 0s → (𝑝 <s 𝑞𝑝 <s 0s ))
121119, 120syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅)))) → (𝑞 = 0s𝑝 <s 𝑞))
122121expimpd 453 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (((∃𝑥𝐿 ∈ ( L ‘𝑥)𝑝 = (𝑥𝐿 +s ( -us𝑥)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑝 = (𝑥 +s ( -us𝑥𝑅))) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞))
12376, 122biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞))
1241233impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) ∧ 𝑞 ∈ { 0s }) → 𝑝 <s 𝑞)
12540, 42, 61, 64, 124ssltd 27837 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) <<s { 0s })
12637abrexex 7988 . . . . . . . . 9 {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∈ V
12735abrexex 7988 . . . . . . . . 9 {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ∈ V
128126, 127unex 7765 . . . . . . . 8 ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V
129128a1i 11 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ∈ V)
13052negscld 28070 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥) ∈ No )
13154, 130addscld 28014 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥)) ∈ No )
132 eleq1 2828 . . . . . . . . . . 11 (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → (𝑐 No ↔ (𝑥𝑅 +s ( -us𝑥)) ∈ No ))
133131, 132syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
134133rexlimdva 3154 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) → 𝑐 No ))
135134abssdv 4067 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ⊆ No )
13645, 84addscld 28014 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥 +s ( -us𝑥𝐿)) ∈ No )
137 eleq1 2828 . . . . . . . . . . 11 (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → (𝑑 No ↔ (𝑥 +s ( -us𝑥𝐿)) ∈ No ))
138136, 137syl5ibrcom 247 . . . . . . . . . 10 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
139138rexlimdva 3154 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) → 𝑑 No ))
140139abssdv 4067 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ⊆ No )
141135, 140unssd 4191 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ⊆ No )
142 velsn 4641 . . . . . . . . . 10 (𝑝 ∈ { 0s } ↔ 𝑝 = 0s )
143 elun 4152 . . . . . . . . . . 11 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
144 vex 3483 . . . . . . . . . . . . 13 𝑞 ∈ V
145 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑐 = 𝑞 → (𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ 𝑞 = (𝑥𝑅 +s ( -us𝑥))))
146145rexbidv 3178 . . . . . . . . . . . . 13 (𝑐 = 𝑞 → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))))
147144, 146elab 3678 . . . . . . . . . . . 12 (𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)))
148 eqeq1 2740 . . . . . . . . . . . . . 14 (𝑑 = 𝑞 → (𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ 𝑞 = (𝑥 +s ( -us𝑥𝐿))))
149148rexbidv 3178 . . . . . . . . . . . . 13 (𝑑 = 𝑞 → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
150144, 149elab 3678 . . . . . . . . . . . 12 (𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))} ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))
151147, 150orbi12i 914 . . . . . . . . . . 11 ((𝑞 ∈ {𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∨ 𝑞 ∈ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
152143, 151bitri 275 . . . . . . . . . 10 (𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}) ↔ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))))
153142, 152anbi12i 628 . . . . . . . . 9 ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) ↔ (𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))))
154 sltnegim 28071 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 No 𝑥𝑅 No ) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
15552, 54, 154syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥)))
156103, 155mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → ( -us𝑥𝑅) <s ( -us𝑥))
15755, 130, 54sltadd2d 28031 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (( -us𝑥𝑅) <s ( -us𝑥) ↔ (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥))))
158156, 157mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑥𝑅 +s ( -us𝑥𝑅)) <s (𝑥𝑅 +s ( -us𝑥)))
159113, 158eqbrtrrd 5166 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → 0s <s (𝑥𝑅 +s ( -us𝑥)))
160 breq2 5146 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥𝑅 +s ( -us𝑥))))
161159, 160syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘𝑥)) → (𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
162161rexlimdva 3154 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) → 0s <s 𝑞))
163162imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥))) → 0s <s 𝑞)
16444, 45, 84sltadd1d 28032 . . . . . . . . . . . . . . . . . 18 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 <s 𝑥 ↔ (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿))))
16580, 164mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑥𝐿 +s ( -us𝑥𝐿)) <s (𝑥 +s ( -us𝑥𝐿)))
16694, 165eqbrtrrd 5166 . . . . . . . . . . . . . . . 16 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → 0s <s (𝑥 +s ( -us𝑥𝐿)))
167 breq2 5146 . . . . . . . . . . . . . . . 16 (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → ( 0s <s 𝑞 ↔ 0s <s (𝑥 +s ( -us𝑥𝐿))))
168166, 167syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘𝑥)) → (𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
169168rexlimdva 3154 . . . . . . . . . . . . . 14 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)) → 0s <s 𝑞))
170169imp 406 . . . . . . . . . . . . 13 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → 0s <s 𝑞)
171163, 170jaodan 959 . . . . . . . . . . . 12 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 0s <s 𝑞)
172 breq1 5145 . . . . . . . . . . . 12 (𝑝 = 0s → (𝑝 <s 𝑞 ↔ 0s <s 𝑞))
173171, 172syl5ibrcom 247 . . . . . . . . . . 11 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → (𝑝 = 0s𝑝 <s 𝑞))
174173ex 412 . . . . . . . . . 10 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿))) → (𝑝 = 0s𝑝 <s 𝑞)))
175174impcomd 411 . . . . . . . . 9 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 = 0s ∧ (∃𝑥𝑅 ∈ ( R ‘𝑥)𝑞 = (𝑥𝑅 +s ( -us𝑥)) ∨ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑞 = (𝑥 +s ( -us𝑥𝐿)))) → 𝑝 <s 𝑞))
176153, 175biimtrid 242 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → ((𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞))
1771763impib 1116 . . . . . . 7 (((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) → 𝑝 <s 𝑞)
17842, 129, 64, 141, 177ssltd 27837 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → { 0s } <<s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))}))
179125, 178cuteq0 27878 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑏 = (𝑥 +s ( -us𝑥𝑅))}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑑 = (𝑥 +s ( -us𝑥𝐿))})) = 0s )
18034, 179eqtrid 2788 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)𝑎 = (𝑥𝐿 +s ( -us𝑥))} ∪ {𝑏 ∣ ∃𝑝 ∈ ( -us “ ( R ‘𝑥))𝑏 = (𝑥 +s 𝑝)}) |s ({𝑐 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)𝑐 = (𝑥𝑅 +s ( -us𝑥))} ∪ {𝑑 ∣ ∃𝑞 ∈ ( -us “ ( L ‘𝑥))𝑑 = (𝑥 +s 𝑞)})) = 0s )
18118, 180eqtrd 2776 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s ) → (𝑥 +s ( -us𝑥)) = 0s )
182181ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))(𝑥𝑂 +s ( -us𝑥𝑂)) = 0s → (𝑥 +s ( -us𝑥)) = 0s ))
1834, 8, 182noinds 27979 1 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  cun 3948  wss 3950  {csn 4625   class class class wbr 5142  cima 5687   Fn wfn 6555  cfv 6560  (class class class)co 7432   No csur 27685   <s cslt 27686   bday cbday 27687   <<s csslt 27826   |s cscut 27828   0s c0s 27868   O cold 27883   L cleft 27885   R cright 27886   +s cadds 27993   -us cnegs 28052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec 27972  df-norec2 27983  df-adds 27994  df-negs 28054
This theorem is referenced by:  negsidd  28075  negsex  28076  negnegs  28077  negsdi  28083  subsid  28100  subadds  28101
  Copyright terms: Public domain W3C validator