MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   GIF version

Theorem ptrescn 22490
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1 𝑋 = 𝐽
ptrescn.2 𝐽 = (∏t𝐹)
ptrescn.3 𝐾 = (∏t‘(𝐹𝐵))
Assertion
Ref Expression
ptrescn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptrescn
Dummy variables 𝑢 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1195 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝐵𝐴)
2 ptrescn.2 . . . . . . . . . 10 𝐽 = (∏t𝐹)
32ptuni 22445 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1134 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
5 ptrescn.1 . . . . . . . 8 𝑋 = 𝐽
64, 5eqtr4di 2789 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
76eleq2d 2816 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ 𝑥𝑋))
87biimpar 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝑥X𝑘𝐴 (𝐹𝑘))
9 resixp 8592 . . . . 5 ((𝐵𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
101, 8, 9syl2anc 587 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
11 ixpeq2 8570 . . . . . . 7 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
12 fvres 6714 . . . . . . . 8 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1312unieqd 4819 . . . . . . 7 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3065 . . . . . 6 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
15 ssexg 5201 . . . . . . . . 9 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1615ancoms 462 . . . . . . . 8 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
17163adant2 1133 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐵 ∈ V)
18 fssres 6563 . . . . . . . 8 ((𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
19183adant1 1132 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
20 ptrescn.3 . . . . . . . 8 𝐾 = (∏t‘(𝐹𝐵))
2120ptuni 22445 . . . . . . 7 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2217, 19, 21syl2anc 587 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2314, 22eqtr3id 2785 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2423adantr 484 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2510, 24eleqtrd 2833 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
2625fmpttd 6910 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾)
27 fimacnv 6545 . . . . . . 7 ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
2826, 27syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
29 pttop 22433 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
302, 29eqeltrid 2835 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 ∈ Top)
31303adant3 1134 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ Top)
325topopn 21757 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝑋𝐽)
3428, 33eqeltrd 2831 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽)
35 elsni 4544 . . . . . . 7 (𝑣 ∈ { 𝐾} → 𝑣 = 𝐾)
3635imaeq2d 5914 . . . . . 6 (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾))
3736eleq1d 2815 . . . . 5 (𝑣 ∈ { 𝐾} → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽))
3834, 37syl5ibrcom 250 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
3938ralrimiv 3094 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
40 imaco 6095 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
41 cnvco 5739 . . . . . . . . . . 11 ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘)))
4225adantlr 715 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
43 eqidd 2737 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵)))
44 eqidd 2737 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑧 𝐾 ↦ (𝑧𝑘)) = (𝑧 𝐾 ↦ (𝑧𝑘)))
45 fveq1 6694 . . . . . . . . . . . . . 14 (𝑧 = (𝑥𝐵) → (𝑧𝑘) = ((𝑥𝐵)‘𝑘))
4642, 43, 44, 45fmptco 6922 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)))
47 fvres 6714 . . . . . . . . . . . . . . 15 (𝑘𝐵 → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4847ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4948mpteq2dv 5136 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)) = (𝑥𝑋 ↦ (𝑥𝑘)))
5046, 49eqtrd 2771 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5150cnveqd 5729 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5241, 51eqtr3id 2785 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5352imaeq1d 5913 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
5440, 53eqtr3id 2785 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
55 simpl1 1193 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐴𝑉)
56 simpl2 1194 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐹:𝐴⟶Top)
57 simpl3 1195 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐵𝐴)
58 simprl 771 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐵)
5957, 58sseldd 3888 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐴)
605, 2ptpjcn 22462 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
6155, 56, 59, 60syl3anc 1373 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
62 simprr 773 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑢 ∈ (𝐹𝑘))
63 cnima 22116 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑢 ∈ (𝐹𝑘)) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6461, 62, 63syl2anc 587 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6554, 64eqeltrd 2831 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽)
66 imaeq2 5910 . . . . . . . 8 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
6766eleq1d 2815 . . . . . . 7 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽))
6865, 67syl5ibrcom 250 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
6968rexlimdvva 3203 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7069alrimiv 1935 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
71 eqid 2736 . . . . . . 7 (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
7271rnmpo 7321 . . . . . 6 ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)}
7372raleqi 3313 . . . . 5 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
7412rexeqdv 3316 . . . . . . . 8 (𝑘𝐵 → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
75 eqeq1 2740 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ 𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7675rexbidv 3206 . . . . . . . 8 (𝑦 = 𝑣 → (∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7774, 76sylan9bbr 514 . . . . . . 7 ((𝑦 = 𝑣𝑘𝐵) → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7877rexbidva 3205 . . . . . 6 (𝑦 = 𝑣 → (∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7978ralab 3595 . . . . 5 (∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8073, 79bitri 278 . . . 4 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8170, 80sylibr 237 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
82 ralunb 4091 . . 3 (∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ (∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ∧ ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8339, 81, 82sylanbrc 586 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
845toptopon 21768 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8531, 84sylib 221 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝑋))
86 snex 5309 . . . 4 { 𝐾} ∈ V
87 fvex 6708 . . . . . . . 8 ((𝐹𝐵)‘𝑘) ∈ V
8887abrexex 7713 . . . . . . 7 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
8988rgenw 3063 . . . . . 6 𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
90 abrexex2g 7715 . . . . . 6 ((𝐵 ∈ V ∧ ∀𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9117, 89, 90sylancl 589 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9272, 91eqeltrid 2835 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V)
93 unexg 7512 . . . 4 (({ 𝐾} ∈ V ∧ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
9486, 92, 93sylancr 590 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
95 eqid 2736 . . . . 5 𝐾 = 𝐾
9620, 95, 71ptval2 22452 . . . 4 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
9717, 19, 96syl2anc 587 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
98 pttop 22433 . . . . . 6 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
9917, 19, 98syl2anc 587 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∏t‘(𝐹𝐵)) ∈ Top)
10020, 99eqeltrid 2835 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ Top)
10195toptopon 21768 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
102100, 101sylib 221 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ (TopOn‘ 𝐾))
10385, 94, 97, 102subbascn 22105 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 ∧ ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)))
10426, 83, 103mpbir2and 713 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wal 1541   = wceq 1543  wcel 2112  {cab 2714  wral 3051  wrex 3052  Vcvv 3398  cun 3851  wss 3853  {csn 4527   cuni 4805  cmpt 5120  ccnv 5535  ran crn 5537  cres 5538  cima 5539  ccom 5540  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  Xcixp 8556  ficfi 9004  topGenctg 16896  tcpt 16897  Topctop 21744  TopOnctopon 21761   Cn ccn 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-fin 8608  df-fi 9005  df-topgen 16902  df-pt 16903  df-top 21745  df-topon 21762  df-bases 21797  df-cn 22078
This theorem is referenced by:  ptunhmeo  22659  tmdgsum  22946
  Copyright terms: Public domain W3C validator