MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   GIF version

Theorem ptrescn 22788
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1 𝑋 = 𝐽
ptrescn.2 𝐽 = (∏t𝐹)
ptrescn.3 𝐾 = (∏t‘(𝐹𝐵))
Assertion
Ref Expression
ptrescn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptrescn
Dummy variables 𝑢 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1192 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝐵𝐴)
2 ptrescn.2 . . . . . . . . . 10 𝐽 = (∏t𝐹)
32ptuni 22743 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1131 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
5 ptrescn.1 . . . . . . . 8 𝑋 = 𝐽
64, 5eqtr4di 2796 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
76eleq2d 2824 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ 𝑥𝑋))
87biimpar 478 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝑥X𝑘𝐴 (𝐹𝑘))
9 resixp 8719 . . . . 5 ((𝐵𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
101, 8, 9syl2anc 584 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
11 ixpeq2 8697 . . . . . . 7 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
12 fvres 6795 . . . . . . . 8 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1312unieqd 4855 . . . . . . 7 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3078 . . . . . 6 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
15 ssexg 5249 . . . . . . . . 9 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1615ancoms 459 . . . . . . . 8 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
17163adant2 1130 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐵 ∈ V)
18 fssres 6642 . . . . . . . 8 ((𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
19183adant1 1129 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
20 ptrescn.3 . . . . . . . 8 𝐾 = (∏t‘(𝐹𝐵))
2120ptuni 22743 . . . . . . 7 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2217, 19, 21syl2anc 584 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2314, 22eqtr3id 2792 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2423adantr 481 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2510, 24eleqtrd 2841 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
2625fmpttd 6991 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾)
27 fimacnv 6624 . . . . . . 7 ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
2826, 27syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
29 pttop 22731 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
302, 29eqeltrid 2843 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 ∈ Top)
31303adant3 1131 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ Top)
325topopn 22053 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝑋𝐽)
3428, 33eqeltrd 2839 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽)
35 elsni 4580 . . . . . . 7 (𝑣 ∈ { 𝐾} → 𝑣 = 𝐾)
3635imaeq2d 5971 . . . . . 6 (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾))
3736eleq1d 2823 . . . . 5 (𝑣 ∈ { 𝐾} → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽))
3834, 37syl5ibrcom 246 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
3938ralrimiv 3102 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
40 imaco 6157 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
41 cnvco 5796 . . . . . . . . . . 11 ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘)))
4225adantlr 712 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
43 eqidd 2739 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵)))
44 eqidd 2739 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑧 𝐾 ↦ (𝑧𝑘)) = (𝑧 𝐾 ↦ (𝑧𝑘)))
45 fveq1 6775 . . . . . . . . . . . . . 14 (𝑧 = (𝑥𝐵) → (𝑧𝑘) = ((𝑥𝐵)‘𝑘))
4642, 43, 44, 45fmptco 7003 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)))
47 fvres 6795 . . . . . . . . . . . . . . 15 (𝑘𝐵 → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4847ad2antrl 725 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4948mpteq2dv 5178 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)) = (𝑥𝑋 ↦ (𝑥𝑘)))
5046, 49eqtrd 2778 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5150cnveqd 5786 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5241, 51eqtr3id 2792 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5352imaeq1d 5970 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
5440, 53eqtr3id 2792 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
55 simpl1 1190 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐴𝑉)
56 simpl2 1191 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐹:𝐴⟶Top)
57 simpl3 1192 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐵𝐴)
58 simprl 768 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐵)
5957, 58sseldd 3923 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐴)
605, 2ptpjcn 22760 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
6155, 56, 59, 60syl3anc 1370 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
62 simprr 770 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑢 ∈ (𝐹𝑘))
63 cnima 22414 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑢 ∈ (𝐹𝑘)) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6461, 62, 63syl2anc 584 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6554, 64eqeltrd 2839 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽)
66 imaeq2 5967 . . . . . . . 8 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
6766eleq1d 2823 . . . . . . 7 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽))
6865, 67syl5ibrcom 246 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
6968rexlimdvva 3222 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7069alrimiv 1930 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
71 eqid 2738 . . . . . . 7 (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
7271rnmpo 7407 . . . . . 6 ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)}
7372raleqi 3345 . . . . 5 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
7412rexeqdv 3348 . . . . . . . 8 (𝑘𝐵 → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
75 eqeq1 2742 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ 𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7675rexbidv 3225 . . . . . . . 8 (𝑦 = 𝑣 → (∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7774, 76sylan9bbr 511 . . . . . . 7 ((𝑦 = 𝑣𝑘𝐵) → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7877rexbidva 3224 . . . . . 6 (𝑦 = 𝑣 → (∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7978ralab 3629 . . . . 5 (∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8073, 79bitri 274 . . . 4 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8170, 80sylibr 233 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
82 ralunb 4126 . . 3 (∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ (∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ∧ ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8339, 81, 82sylanbrc 583 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
845toptopon 22064 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8531, 84sylib 217 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝑋))
86 snex 5356 . . . 4 { 𝐾} ∈ V
87 fvex 6789 . . . . . . . 8 ((𝐹𝐵)‘𝑘) ∈ V
8887abrexex 7805 . . . . . . 7 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
8988rgenw 3076 . . . . . 6 𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
90 abrexex2g 7807 . . . . . 6 ((𝐵 ∈ V ∧ ∀𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9117, 89, 90sylancl 586 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9272, 91eqeltrid 2843 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V)
93 unexg 7599 . . . 4 (({ 𝐾} ∈ V ∧ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
9486, 92, 93sylancr 587 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
95 eqid 2738 . . . . 5 𝐾 = 𝐾
9620, 95, 71ptval2 22750 . . . 4 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
9717, 19, 96syl2anc 584 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
98 pttop 22731 . . . . . 6 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
9917, 19, 98syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∏t‘(𝐹𝐵)) ∈ Top)
10020, 99eqeltrid 2843 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ Top)
10195toptopon 22064 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
102100, 101sylib 217 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ (TopOn‘ 𝐾))
10385, 94, 97, 102subbascn 22403 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 ∧ ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)))
10426, 83, 103mpbir2and 710 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3431  cun 3886  wss 3888  {csn 4563   cuni 4841  cmpt 5159  ccnv 5590  ran crn 5592  cres 5593  cima 5594  ccom 5595  wf 6431  cfv 6435  (class class class)co 7277  cmpo 7279  Xcixp 8683  ficfi 9167  topGenctg 17146  tcpt 17147  Topctop 22040  TopOnctopon 22057   Cn ccn 22373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8295  df-er 8496  df-map 8615  df-ixp 8684  df-en 8732  df-dom 8733  df-fin 8735  df-fi 9168  df-topgen 17152  df-pt 17153  df-top 22041  df-topon 22058  df-bases 22094  df-cn 22376
This theorem is referenced by:  ptunhmeo  22957  tmdgsum  23244
  Copyright terms: Public domain W3C validator