MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   GIF version

Theorem ptrescn 23533
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1 𝑋 = 𝐽
ptrescn.2 𝐽 = (∏t𝐹)
ptrescn.3 𝐾 = (∏t‘(𝐹𝐵))
Assertion
Ref Expression
ptrescn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptrescn
Dummy variables 𝑢 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝐵𝐴)
2 ptrescn.2 . . . . . . . . . 10 𝐽 = (∏t𝐹)
32ptuni 23488 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1132 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
5 ptrescn.1 . . . . . . . 8 𝑋 = 𝐽
64, 5eqtr4di 2783 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
76eleq2d 2815 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ 𝑥𝑋))
87biimpar 477 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝑥X𝑘𝐴 (𝐹𝑘))
9 resixp 8909 . . . . 5 ((𝐵𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
101, 8, 9syl2anc 584 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
11 ixpeq2 8887 . . . . . . 7 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
12 fvres 6880 . . . . . . . 8 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1312unieqd 4887 . . . . . . 7 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3051 . . . . . 6 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
15 ssexg 5281 . . . . . . . . 9 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1615ancoms 458 . . . . . . . 8 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
17163adant2 1131 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐵 ∈ V)
18 fssres 6729 . . . . . . . 8 ((𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
19183adant1 1130 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
20 ptrescn.3 . . . . . . . 8 𝐾 = (∏t‘(𝐹𝐵))
2120ptuni 23488 . . . . . . 7 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2217, 19, 21syl2anc 584 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2314, 22eqtr3id 2779 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2423adantr 480 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2510, 24eleqtrd 2831 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
2625fmpttd 7090 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾)
27 fimacnv 6713 . . . . . . 7 ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
2826, 27syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
29 pttop 23476 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
302, 29eqeltrid 2833 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 ∈ Top)
31303adant3 1132 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ Top)
325topopn 22800 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝑋𝐽)
3428, 33eqeltrd 2829 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽)
35 elsni 4609 . . . . . . 7 (𝑣 ∈ { 𝐾} → 𝑣 = 𝐾)
3635imaeq2d 6034 . . . . . 6 (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾))
3736eleq1d 2814 . . . . 5 (𝑣 ∈ { 𝐾} → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽))
3834, 37syl5ibrcom 247 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
3938ralrimiv 3125 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
40 imaco 6227 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
41 cnvco 5852 . . . . . . . . . . 11 ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘)))
4225adantlr 715 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
43 eqidd 2731 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵)))
44 eqidd 2731 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑧 𝐾 ↦ (𝑧𝑘)) = (𝑧 𝐾 ↦ (𝑧𝑘)))
45 fveq1 6860 . . . . . . . . . . . . . 14 (𝑧 = (𝑥𝐵) → (𝑧𝑘) = ((𝑥𝐵)‘𝑘))
4642, 43, 44, 45fmptco 7104 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)))
47 fvres 6880 . . . . . . . . . . . . . . 15 (𝑘𝐵 → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4847ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4948mpteq2dv 5204 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)) = (𝑥𝑋 ↦ (𝑥𝑘)))
5046, 49eqtrd 2765 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5150cnveqd 5842 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5241, 51eqtr3id 2779 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5352imaeq1d 6033 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
5440, 53eqtr3id 2779 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
55 simpl1 1192 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐴𝑉)
56 simpl2 1193 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐹:𝐴⟶Top)
57 simpl3 1194 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐵𝐴)
58 simprl 770 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐵)
5957, 58sseldd 3950 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐴)
605, 2ptpjcn 23505 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
6155, 56, 59, 60syl3anc 1373 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
62 simprr 772 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑢 ∈ (𝐹𝑘))
63 cnima 23159 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑢 ∈ (𝐹𝑘)) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6461, 62, 63syl2anc 584 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6554, 64eqeltrd 2829 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽)
66 imaeq2 6030 . . . . . . . 8 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
6766eleq1d 2814 . . . . . . 7 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽))
6865, 67syl5ibrcom 247 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
6968rexlimdvva 3195 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7069alrimiv 1927 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
71 eqid 2730 . . . . . . 7 (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
7271rnmpo 7525 . . . . . 6 ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)}
7372raleqi 3299 . . . . 5 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
7412rexeqdv 3302 . . . . . . . 8 (𝑘𝐵 → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
75 eqeq1 2734 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ 𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7675rexbidv 3158 . . . . . . . 8 (𝑦 = 𝑣 → (∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7774, 76sylan9bbr 510 . . . . . . 7 ((𝑦 = 𝑣𝑘𝐵) → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7877rexbidva 3156 . . . . . 6 (𝑦 = 𝑣 → (∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7978ralab 3667 . . . . 5 (∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8073, 79bitri 275 . . . 4 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8170, 80sylibr 234 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
82 ralunb 4163 . . 3 (∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ (∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ∧ ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8339, 81, 82sylanbrc 583 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
845toptopon 22811 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8531, 84sylib 218 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝑋))
86 snex 5394 . . . 4 { 𝐾} ∈ V
87 fvex 6874 . . . . . . . 8 ((𝐹𝐵)‘𝑘) ∈ V
8887abrexex 7944 . . . . . . 7 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
8988rgenw 3049 . . . . . 6 𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
90 abrexex2g 7946 . . . . . 6 ((𝐵 ∈ V ∧ ∀𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9117, 89, 90sylancl 586 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9272, 91eqeltrid 2833 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V)
93 unexg 7722 . . . 4 (({ 𝐾} ∈ V ∧ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
9486, 92, 93sylancr 587 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
95 eqid 2730 . . . . 5 𝐾 = 𝐾
9620, 95, 71ptval2 23495 . . . 4 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
9717, 19, 96syl2anc 584 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
98 pttop 23476 . . . . . 6 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
9917, 19, 98syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∏t‘(𝐹𝐵)) ∈ Top)
10020, 99eqeltrid 2833 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ Top)
10195toptopon 22811 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
102100, 101sylib 218 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ (TopOn‘ 𝐾))
10385, 94, 97, 102subbascn 23148 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 ∧ ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)))
10426, 83, 103mpbir2and 713 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Xcixp 8873  ficfi 9368  topGenctg 17407  tcpt 17408  Topctop 22787  TopOnctopon 22804   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121
This theorem is referenced by:  ptunhmeo  23702  tmdgsum  23989
  Copyright terms: Public domain W3C validator