MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Visualization version   GIF version

Theorem ptrescn 21663
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1 𝑋 = 𝐽
ptrescn.2 𝐽 = (∏t𝐹)
ptrescn.3 𝐾 = (∏t‘(𝐹𝐵))
Assertion
Ref Expression
ptrescn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptrescn
Dummy variables 𝑢 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1231 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝐵𝐴)
2 ptrescn.2 . . . . . . . . . 10 𝐽 = (∏t𝐹)
32ptuni 21618 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1126 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
5 ptrescn.1 . . . . . . . 8 𝑋 = 𝐽
64, 5syl6eqr 2823 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝑋)
76eleq2d 2836 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ 𝑥𝑋))
87biimpar 463 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → 𝑥X𝑘𝐴 (𝐹𝑘))
9 resixp 8097 . . . . 5 ((𝐵𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
101, 8, 9syl2anc 573 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ X𝑘𝐵 (𝐹𝑘))
11 ixpeq2 8076 . . . . . . 7 (∀𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘))
12 fvres 6348 . . . . . . . 8 (𝑘𝐵 → ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1312unieqd 4584 . . . . . . 7 (𝑘𝐵 ((𝐹𝐵)‘𝑘) = (𝐹𝑘))
1411, 13mprg 3075 . . . . . 6 X𝑘𝐵 ((𝐹𝐵)‘𝑘) = X𝑘𝐵 (𝐹𝑘)
15 ssexg 4938 . . . . . . . . 9 ((𝐵𝐴𝐴𝑉) → 𝐵 ∈ V)
1615ancoms 455 . . . . . . . 8 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ V)
17163adant2 1125 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐵 ∈ V)
18 fssres 6210 . . . . . . . 8 ((𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
19183adant1 1124 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝐹𝐵):𝐵⟶Top)
20 ptrescn.3 . . . . . . . 8 𝐾 = (∏t‘(𝐹𝐵))
2120ptuni 21618 . . . . . . 7 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2217, 19, 21syl2anc 573 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 ((𝐹𝐵)‘𝑘) = 𝐾)
2314, 22syl5eqr 2819 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2423adantr 466 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → X𝑘𝐵 (𝐹𝑘) = 𝐾)
2510, 24eleqtrd 2852 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
26 eqid 2771 . . 3 (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵))
2725, 26fmptd 6527 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾)
28 fimacnv 6490 . . . . . . 7 ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
2927, 28syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) = 𝑋)
30 pttop 21606 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
312, 30syl5eqel 2854 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 ∈ Top)
32313adant3 1126 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ Top)
335topopn 20931 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
3432, 33syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝑋𝐽)
3529, 34eqeltrd 2850 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽)
36 elsni 4333 . . . . . . 7 (𝑣 ∈ { 𝐾} → 𝑣 = 𝐾)
3736imaeq2d 5607 . . . . . 6 (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾))
3837eleq1d 2835 . . . . 5 (𝑣 ∈ { 𝐾} → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝐾) ∈ 𝐽))
3935, 38syl5ibrcom 237 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑣 ∈ { 𝐾} → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
4039ralrimiv 3114 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
41 imaco 5784 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
42 cnvco 5446 . . . . . . . . . . 11 ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘)))
4325adantlr 694 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) ∧ 𝑥𝑋) → (𝑥𝐵) ∈ 𝐾)
44 eqidd 2772 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝐵)) = (𝑥𝑋 ↦ (𝑥𝐵)))
45 eqidd 2772 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑧 𝐾 ↦ (𝑧𝑘)) = (𝑧 𝐾 ↦ (𝑧𝑘)))
46 fveq1 6331 . . . . . . . . . . . . . 14 (𝑧 = (𝑥𝐵) → (𝑧𝑘) = ((𝑥𝐵)‘𝑘))
4743, 44, 45, 46fmptco 6539 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)))
48 fvres 6348 . . . . . . . . . . . . . . 15 (𝑘𝐵 → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
4948ad2antrl 707 . . . . . . . . . . . . . 14 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝐵)‘𝑘) = (𝑥𝑘))
5049mpteq2dv 4879 . . . . . . . . . . . . 13 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ ((𝑥𝐵)‘𝑘)) = (𝑥𝑋 ↦ (𝑥𝑘)))
5147, 50eqtrd 2805 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5251cnveqd 5436 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑧 𝐾 ↦ (𝑧𝑘)) ∘ (𝑥𝑋 ↦ (𝑥𝐵))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5342, 52syl5eqr 2819 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) = (𝑥𝑋 ↦ (𝑥𝑘)))
5453imaeq1d 5606 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (((𝑥𝑋 ↦ (𝑥𝐵)) ∘ (𝑧 𝐾 ↦ (𝑧𝑘))) “ 𝑢) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
5541, 54syl5eqr 2819 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢))
56 simpl1 1227 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐴𝑉)
57 simpl2 1229 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐹:𝐴⟶Top)
58 simpl3 1231 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝐵𝐴)
59 simprl 754 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐵)
6058, 59sseldd 3753 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑘𝐴)
615, 2ptpjcn 21635 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
6256, 57, 60, 61syl3anc 1476 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)))
63 simprr 756 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → 𝑢 ∈ (𝐹𝑘))
64 cnima 21290 . . . . . . . . 9 (((𝑥𝑋 ↦ (𝑥𝑘)) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑢 ∈ (𝐹𝑘)) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6562, 63, 64syl2anc 573 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝑘)) “ 𝑢) ∈ 𝐽)
6655, 65eqeltrd 2850 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽)
67 imaeq2 5603 . . . . . . . 8 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) = ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
6867eleq1d 2835 . . . . . . 7 (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → (((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ((𝑥𝑋 ↦ (𝑥𝐵)) “ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ 𝐽))
6966, 68syl5ibrcom 237 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) ∧ (𝑘𝐵𝑢 ∈ (𝐹𝑘))) → (𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7069rexlimdvva 3186 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
7170alrimiv 2007 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
72 eqid 2771 . . . . . . 7 (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))
7372rnmpt2 6917 . . . . . 6 ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) = {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)}
7473raleqi 3291 . . . . 5 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
7512rexeqdv 3294 . . . . . . . 8 (𝑘𝐵 → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
76 eqeq1 2775 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ 𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7776rexbidv 3200 . . . . . . . 8 (𝑦 = 𝑣 → (∃𝑢 ∈ (𝐹𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7875, 77sylan9bbr 500 . . . . . . 7 ((𝑦 = 𝑣𝑘𝐵) → (∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
7978rexbidva 3197 . . . . . 6 (𝑦 = 𝑣 → (∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) ↔ ∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))
8079ralab 3519 . . . . 5 (∀𝑣 ∈ {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8174, 80bitri 264 . . . 4 (∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ ∀𝑣(∃𝑘𝐵𝑢 ∈ (𝐹𝑘)𝑣 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢) → ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8271, 81sylibr 224 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
83 ralunb 3945 . . 3 (∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ↔ (∀𝑣 ∈ { 𝐾} ((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽 ∧ ∀𝑣 ∈ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽))
8440, 82, 83sylanbrc 572 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)
855toptopon 20942 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
8632, 85sylib 208 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐽 ∈ (TopOn‘𝑋))
87 snex 5036 . . . 4 { 𝐾} ∈ V
88 fvex 6342 . . . . . . . 8 ((𝐹𝐵)‘𝑘) ∈ V
8988abrexex 7288 . . . . . . 7 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
9089rgenw 3073 . . . . . 6 𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V
91 abrexex2g 7291 . . . . . 6 ((𝐵 ∈ V ∧ ∀𝑘𝐵 {𝑦 ∣ ∃𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9217, 90, 91sylancl 574 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → {𝑦 ∣ ∃𝑘𝐵𝑢 ∈ ((𝐹𝐵)‘𝑘)𝑦 = ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)} ∈ V)
9373, 92syl5eqel 2854 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V)
94 unexg 7106 . . . 4 (({ 𝐾} ∈ V ∧ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)) ∈ V) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
9587, 93, 94sylancr 575 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))) ∈ V)
96 eqid 2771 . . . . 5 𝐾 = 𝐾
9720, 96, 72ptval2 21625 . . . 4 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
9817, 19, 97syl2anc 573 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 = (topGen‘(fi‘({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢))))))
99 pttop 21606 . . . . . 6 ((𝐵 ∈ V ∧ (𝐹𝐵):𝐵⟶Top) → (∏t‘(𝐹𝐵)) ∈ Top)
10017, 19, 99syl2anc 573 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (∏t‘(𝐹𝐵)) ∈ Top)
10120, 100syl5eqel 2854 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ Top)
10296toptopon 20942 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
103101, 102sylib 208 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → 𝐾 ∈ (TopOn‘ 𝐾))
10486, 95, 98, 103subbascn 21279 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → ((𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑥𝐵)):𝑋 𝐾 ∧ ∀𝑣 ∈ ({ 𝐾} ∪ ran (𝑘𝐵, 𝑢 ∈ ((𝐹𝐵)‘𝑘) ↦ ((𝑧 𝐾 ↦ (𝑧𝑘)) “ 𝑢)))((𝑥𝑋 ↦ (𝑥𝐵)) “ 𝑣) ∈ 𝐽)))
10527, 84, 104mpbir2and 692 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐵𝐴) → (𝑥𝑋 ↦ (𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071  wal 1629   = wceq 1631  wcel 2145  {cab 2757  wral 3061  wrex 3062  Vcvv 3351  cun 3721  wss 3723  {csn 4316   cuni 4574  cmpt 4863  ccnv 5248  ran crn 5250  cres 5251  cima 5252  ccom 5253  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  Xcixp 8062  ficfi 8472  topGenctg 16306  tcpt 16307  Topctop 20918  TopOnctopon 20935   Cn ccn 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-fin 8113  df-fi 8473  df-topgen 16312  df-pt 16313  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252
This theorem is referenced by:  ptunhmeo  21832  tmdgsum  22119
  Copyright terms: Public domain W3C validator