Step | Hyp | Ref
| Expression |
1 | | oppcsect.b |
. . . . . 6
β’ π΅ = (BaseβπΆ) |
2 | | eqid 2732 |
. . . . . 6
β’
(compβπΆ) =
(compβπΆ) |
3 | | oppcsect.o |
. . . . . 6
β’ π = (oppCatβπΆ) |
4 | | oppcsect.x |
. . . . . . 7
β’ (π β π β π΅) |
5 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β π β π΅) |
6 | | oppcsect.y |
. . . . . . 7
β’ (π β π β π΅) |
7 | 6 | adantr 481 |
. . . . . 6
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β π β π΅) |
8 | 1, 2, 3, 5, 7, 5 | oppcco 17666 |
. . . . 5
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β (πΊ(β¨π, πβ©(compβπ)π)πΉ) = (πΉ(β¨π, πβ©(compβπΆ)π)πΊ)) |
9 | | oppcsect.c |
. . . . . . . 8
β’ (π β πΆ β Cat) |
10 | 9 | adantr 481 |
. . . . . . 7
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β πΆ β Cat) |
11 | | eqid 2732 |
. . . . . . . 8
β’
(IdβπΆ) =
(IdβπΆ) |
12 | 3, 11 | oppcid 17671 |
. . . . . . 7
β’ (πΆ β Cat β
(Idβπ) =
(IdβπΆ)) |
13 | 10, 12 | syl 17 |
. . . . . 6
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β (Idβπ) = (IdβπΆ)) |
14 | 13 | fveq1d 6893 |
. . . . 5
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β ((Idβπ)βπ) = ((IdβπΆ)βπ)) |
15 | 8, 14 | eqeq12d 2748 |
. . . 4
β’ ((π β§ (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) β ((πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ) β (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ))) |
16 | 15 | pm5.32da 579 |
. . 3
β’ (π β (((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π)) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)) β ((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π)) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)))) |
17 | | df-3an 1089 |
. . . 4
β’ ((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)) β ((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π)) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ))) |
18 | | eqid 2732 |
. . . . . . . 8
β’ (Hom
βπΆ) = (Hom
βπΆ) |
19 | 18, 3 | oppchom 17664 |
. . . . . . 7
β’ (π(Hom βπ)π) = (π(Hom βπΆ)π) |
20 | 19 | eleq2i 2825 |
. . . . . 6
β’ (πΉ β (π(Hom βπ)π) β πΉ β (π(Hom βπΆ)π)) |
21 | 18, 3 | oppchom 17664 |
. . . . . . 7
β’ (π(Hom βπ)π) = (π(Hom βπΆ)π) |
22 | 21 | eleq2i 2825 |
. . . . . 6
β’ (πΊ β (π(Hom βπ)π) β πΊ β (π(Hom βπΆ)π)) |
23 | 20, 22 | anbi12ci 628 |
. . . . 5
β’ ((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π)) β (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π))) |
24 | 23 | anbi1i 624 |
. . . 4
β’ (((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π)) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)) β ((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π)) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ))) |
25 | 17, 24 | bitri 274 |
. . 3
β’ ((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)) β ((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π)) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ))) |
26 | | df-3an 1089 |
. . 3
β’ ((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)) β ((πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π)) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ))) |
27 | 16, 25, 26 | 3bitr4g 313 |
. 2
β’ (π β ((πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)) β (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)))) |
28 | 3, 1 | oppcbas 17667 |
. . 3
β’ π΅ = (Baseβπ) |
29 | | eqid 2732 |
. . 3
β’ (Hom
βπ) = (Hom
βπ) |
30 | | eqid 2732 |
. . 3
β’
(compβπ) =
(compβπ) |
31 | | eqid 2732 |
. . 3
β’
(Idβπ) =
(Idβπ) |
32 | | oppcsect.t |
. . 3
β’ π = (Sectβπ) |
33 | 3 | oppccat 17672 |
. . . 4
β’ (πΆ β Cat β π β Cat) |
34 | 9, 33 | syl 17 |
. . 3
β’ (π β π β Cat) |
35 | 28, 29, 30, 31, 32, 34, 4, 6 | issect 17704 |
. 2
β’ (π β (πΉ(πππ)πΊ β (πΉ β (π(Hom βπ)π) β§ πΊ β (π(Hom βπ)π) β§ (πΊ(β¨π, πβ©(compβπ)π)πΉ) = ((Idβπ)βπ)))) |
36 | | oppcsect.s |
. . 3
β’ π = (SectβπΆ) |
37 | 1, 18, 2, 11, 36, 9, 4, 6 | issect 17704 |
. 2
β’ (π β (πΊ(πππ)πΉ β (πΊ β (π(Hom βπΆ)π) β§ πΉ β (π(Hom βπΆ)π) β§ (πΉ(β¨π, πβ©(compβπΆ)π)πΊ) = ((IdβπΆ)βπ)))) |
38 | 27, 35, 37 | 3bitr4d 310 |
1
β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) |