Proof of Theorem oppcsect
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oppcsect.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐶) | 
| 2 |  | eqid 2736 | . . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) | 
| 3 |  | oppcsect.o | . . . . . 6
⊢ 𝑂 = (oppCat‘𝐶) | 
| 4 |  | oppcsect.x | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 5 | 4 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝑋 ∈ 𝐵) | 
| 6 |  | oppcsect.y | . . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝑌 ∈ 𝐵) | 
| 8 | 1, 2, 3, 5, 7, 5 | oppcco 17761 | . . . . 5
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺)) | 
| 9 |  | oppcsect.c | . . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 10 | 9 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat) | 
| 11 |  | eqid 2736 | . . . . . . . 8
⊢
(Id‘𝐶) =
(Id‘𝐶) | 
| 12 | 3, 11 | oppcid 17765 | . . . . . . 7
⊢ (𝐶 ∈ Cat →
(Id‘𝑂) =
(Id‘𝐶)) | 
| 13 | 10, 12 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → (Id‘𝑂) = (Id‘𝐶)) | 
| 14 | 13 | fveq1d 6907 | . . . . 5
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋)) | 
| 15 | 8, 14 | eqeq12d 2752 | . . . 4
⊢ ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋) ↔ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) | 
| 16 | 15 | pm5.32da 579 | . . 3
⊢ (𝜑 → (((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) | 
| 17 |  | df-3an 1088 | . . . 4
⊢ ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋))) | 
| 18 |  | eqid 2736 | . . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 19 | 18, 3 | oppchom 17759 | . . . . . . 7
⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌(Hom ‘𝐶)𝑋) | 
| 20 | 19 | eleq2i 2832 | . . . . . 6
⊢ (𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ↔ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) | 
| 21 | 18, 3 | oppchom 17759 | . . . . . . 7
⊢ (𝑌(Hom ‘𝑂)𝑋) = (𝑋(Hom ‘𝐶)𝑌) | 
| 22 | 21 | eleq2i 2832 | . . . . . 6
⊢ (𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ↔ 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌)) | 
| 23 | 20, 22 | anbi12ci 629 | . . . . 5
⊢ ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) | 
| 24 | 23 | anbi1i 624 | . . . 4
⊢ (((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋))) | 
| 25 | 17, 24 | bitri 275 | . . 3
⊢ ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋))) | 
| 26 |  | df-3an 1088 | . . 3
⊢ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))) | 
| 27 | 16, 25, 26 | 3bitr4g 314 | . 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) | 
| 28 | 3, 1 | oppcbas 17762 | . . 3
⊢ 𝐵 = (Base‘𝑂) | 
| 29 |  | eqid 2736 | . . 3
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) | 
| 30 |  | eqid 2736 | . . 3
⊢
(comp‘𝑂) =
(comp‘𝑂) | 
| 31 |  | eqid 2736 | . . 3
⊢
(Id‘𝑂) =
(Id‘𝑂) | 
| 32 |  | oppcsect.t | . . 3
⊢ 𝑇 = (Sect‘𝑂) | 
| 33 | 3 | oppccat 17766 | . . . 4
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) | 
| 34 | 9, 33 | syl 17 | . . 3
⊢ (𝜑 → 𝑂 ∈ Cat) | 
| 35 | 28, 29, 30, 31, 32, 34, 4, 6 | issect 17798 | . 2
⊢ (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)))) | 
| 36 |  | oppcsect.s | . . 3
⊢ 𝑆 = (Sect‘𝐶) | 
| 37 | 1, 18, 2, 11, 36, 9, 4, 6 | issect 17798 | . 2
⊢ (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))) | 
| 38 | 27, 35, 37 | 3bitr4d 311 | 1
⊢ (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺 ↔ 𝐺(𝑋𝑆𝑌)𝐹)) |