| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvco1 | Structured version Visualization version GIF version | ||
| Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| cnvco1 | ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6052 | . 2 ⊢ Rel ◡(◡𝐴 ∘ 𝐵) | |
| 2 | relco 6056 | . 2 ⊢ Rel (◡𝐵 ∘ 𝐴) | |
| 3 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 4 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brcnv 5821 | . . . . . 6 ⊢ (𝑧◡𝐵𝑦 ↔ 𝑦𝐵𝑧) |
| 6 | 5 | bicomi 224 | . . . . 5 ⊢ (𝑦𝐵𝑧 ↔ 𝑧◡𝐵𝑦) |
| 7 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 3, 7 | brcnv 5821 | . . . . 5 ⊢ (𝑧◡𝐴𝑥 ↔ 𝑥𝐴𝑧) |
| 9 | 6, 8 | anbi12ci 629 | . . . 4 ⊢ ((𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ (𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 10 | 9 | exbii 1849 | . . 3 ⊢ (∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 11 | 7, 4 | opelcnv 5820 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵)) |
| 12 | 4, 7 | opelco 5810 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
| 13 | 11, 12 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
| 14 | 7, 4 | opelco 5810 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 15 | 10, 13, 14 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴)) |
| 16 | 1, 2, 15 | eqrelriiv 5729 | 1 ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ◡ccnv 5613 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 |
| This theorem is referenced by: pprodcnveq 35925 |
| Copyright terms: Public domain | W3C validator |