Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco1 Structured version   Visualization version   GIF version

Theorem cnvco1 33069
 Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco1 (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5945 . 2 Rel (𝐴𝐵)
2 relco 6075 . 2 Rel (𝐵𝐴)
3 vex 3472 . . . . . . 7 𝑧 ∈ V
4 vex 3472 . . . . . . 7 𝑦 ∈ V
53, 4brcnv 5730 . . . . . 6 (𝑧𝐵𝑦𝑦𝐵𝑧)
65bicomi 227 . . . . 5 (𝑦𝐵𝑧𝑧𝐵𝑦)
7 vex 3472 . . . . . 6 𝑥 ∈ V
83, 7brcnv 5730 . . . . 5 (𝑧𝐴𝑥𝑥𝐴𝑧)
96, 8anbi12ci 630 . . . 4 ((𝑦𝐵𝑧𝑧𝐴𝑥) ↔ (𝑥𝐴𝑧𝑧𝐵𝑦))
109exbii 1849 . . 3 (∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
117, 4opelcnv 5729 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
124, 7opelco 5719 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
1311, 12bitri 278 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
147, 4opelco 5719 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
1510, 13, 143bitr4i 306 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴))
161, 2, 15eqrelriiv 5640 1 (𝐴𝐵) = (𝐵𝐴)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2114  ⟨cop 4545   class class class wbr 5042  ◡ccnv 5531   ∘ ccom 5536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541 This theorem is referenced by:  pprodcnveq  33418
 Copyright terms: Public domain W3C validator