| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvco1 | Structured version Visualization version GIF version | ||
| Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| cnvco1 | ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6096 | . 2 ⊢ Rel ◡(◡𝐴 ∘ 𝐵) | |
| 2 | relco 6100 | . 2 ⊢ Rel (◡𝐵 ∘ 𝐴) | |
| 3 | vex 3468 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 4 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brcnv 5867 | . . . . . 6 ⊢ (𝑧◡𝐵𝑦 ↔ 𝑦𝐵𝑧) |
| 6 | 5 | bicomi 224 | . . . . 5 ⊢ (𝑦𝐵𝑧 ↔ 𝑧◡𝐵𝑦) |
| 7 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 3, 7 | brcnv 5867 | . . . . 5 ⊢ (𝑧◡𝐴𝑥 ↔ 𝑥𝐴𝑧) |
| 9 | 6, 8 | anbi12ci 629 | . . . 4 ⊢ ((𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ (𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 10 | 9 | exbii 1848 | . . 3 ⊢ (∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 11 | 7, 4 | opelcnv 5866 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵)) |
| 12 | 4, 7 | opelco 5856 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
| 13 | 11, 12 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
| 14 | 7, 4 | opelco 5856 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
| 15 | 10, 13, 14 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴)) |
| 16 | 1, 2, 15 | eqrelriiv 5774 | 1 ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 ◡ccnv 5658 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 |
| This theorem is referenced by: pprodcnveq 35906 |
| Copyright terms: Public domain | W3C validator |