Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvco1 | Structured version Visualization version GIF version |
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
cnvco1 | ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6012 | . 2 ⊢ Rel ◡(◡𝐴 ∘ 𝐵) | |
2 | relco 6148 | . 2 ⊢ Rel (◡𝐵 ∘ 𝐴) | |
3 | vex 3436 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
4 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brcnv 5791 | . . . . . 6 ⊢ (𝑧◡𝐵𝑦 ↔ 𝑦𝐵𝑧) |
6 | 5 | bicomi 223 | . . . . 5 ⊢ (𝑦𝐵𝑧 ↔ 𝑧◡𝐵𝑦) |
7 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 3, 7 | brcnv 5791 | . . . . 5 ⊢ (𝑧◡𝐴𝑥 ↔ 𝑥𝐴𝑧) |
9 | 6, 8 | anbi12ci 628 | . . . 4 ⊢ ((𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ (𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
10 | 9 | exbii 1850 | . . 3 ⊢ (∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
11 | 7, 4 | opelcnv 5790 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵)) |
12 | 4, 7 | opelco 5780 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ (◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
13 | 11, 12 | bitri 274 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ ∃𝑧(𝑦𝐵𝑧 ∧ 𝑧◡𝐴𝑥)) |
14 | 7, 4 | opelco 5780 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴) ↔ ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧◡𝐵𝑦)) |
15 | 10, 13, 14 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(◡𝐴 ∘ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐵 ∘ 𝐴)) |
16 | 1, 2, 15 | eqrelriiv 5700 | 1 ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 ◡ccnv 5588 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 |
This theorem is referenced by: pprodcnveq 34185 |
Copyright terms: Public domain | W3C validator |