Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oduprs Structured version   Visualization version   GIF version

Theorem oduprs 30657
 Description: Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypothesis
Ref Expression
oduprs.d 𝐷 = (ODual‘𝐾)
Assertion
Ref Expression
oduprs (𝐾 ∈ Proset → 𝐷 ∈ Proset )

Proof of Theorem oduprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2824 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
31, 2isprs 17540 . . . . . . . . . . . . 13 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
43simprbi 500 . . . . . . . . . . . 12 (𝐾 ∈ Proset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
54r19.21bi 3203 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
65r19.21bi 3203 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
76r19.21bi 3203 . . . . . . . . 9 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
87simpld 498 . . . . . . . 8 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥(le‘𝐾)𝑥)
9 vex 3483 . . . . . . . . 9 𝑥 ∈ V
109, 9brcnv 5740 . . . . . . . 8 (𝑥(le‘𝐾)𝑥𝑥(le‘𝐾)𝑥)
118, 10sylibr 237 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥(le‘𝐾)𝑥)
121, 2isprs 17540 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑧 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))))
1312simprbi 500 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Proset → ∀𝑧 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
1413r19.21bi 3203 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
1514r19.21bi 3203 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
1615r19.21bi 3203 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
1716simprd 499 . . . . . . . . . . . . 13 ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))
1817an32s 651 . . . . . . . . . . . 12 ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))
1918ex 416 . . . . . . . . . . 11 (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
2019an32s 651 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))
2120imp 410 . . . . . . . . 9 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))
2221an32s 651 . . . . . . . 8 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))
23 vex 3483 . . . . . . . . . 10 𝑦 ∈ V
249, 23brcnv 5740 . . . . . . . . 9 (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥)
25 vex 3483 . . . . . . . . . 10 𝑧 ∈ V
2623, 25brcnv 5740 . . . . . . . . 9 (𝑦(le‘𝐾)𝑧𝑧(le‘𝐾)𝑦)
2724, 26anbi12ci 630 . . . . . . . 8 ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑧(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥))
289, 25brcnv 5740 . . . . . . . 8 (𝑥(le‘𝐾)𝑧𝑧(le‘𝐾)𝑥)
2922, 27, 283imtr4g 299 . . . . . . 7 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))
3011, 29jca 515 . . . . . 6 ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
3130ralrimiva 3177 . . . . 5 (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
3231ralrimiva 3177 . . . 4 ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
3332ralrimiva 3177 . . 3 (𝐾 ∈ Proset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
34 oduprs.d . . . 4 𝐷 = (ODual‘𝐾)
3534fvexi 6675 . . 3 𝐷 ∈ V
3633, 35jctil 523 . 2 (𝐾 ∈ Proset → (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
3734, 1odubas 17743 . . 3 (Base‘𝐾) = (Base‘𝐷)
3834, 2oduleval 17741 . . 3 (le‘𝐾) = (le‘𝐷)
3937, 38isprs 17540 . 2 (𝐷 ∈ Proset ↔ (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
4036, 39sylibr 237 1 (𝐾 ∈ Proset → 𝐷 ∈ Proset )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  Vcvv 3480   class class class wbr 5052  ◡ccnv 5541  ‘cfv 6343  Basecbs 16483  lecple 16572   Proset cproset 17536  ODualcodu 17738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-dec 12096  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ple 16585  df-proset 17538  df-odu 17739 This theorem is referenced by:  mcgcnv  30693  ordtcnvNEW  31223
 Copyright terms: Public domain W3C validator