| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 2 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(le‘𝐾) =
(le‘𝐾) |
| 3 | 1, 2 | isprs 18313 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 4 | 3 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
| 5 | 4 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
| 6 | 5 | r19.21bi 3238 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
| 7 | 6 | r19.21bi 3238 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
| 8 | 7 | simpld 494 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥(le‘𝐾)𝑥) |
| 9 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 10 | 9, 9 | brcnv 5867 |
. . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑥 ↔ 𝑥(le‘𝐾)𝑥) |
| 11 | 8, 10 | sylibr 234 |
. . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥◡(le‘𝐾)𝑥) |
| 12 | 1, 2 | isprs 18313 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑧 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))) |
| 13 | 12 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Proset →
∀𝑧 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 14 | 13 | r19.21bi 3238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 15 | 14 | r19.21bi 3238 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 16 | 15 | r19.21bi 3238 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 17 | 16 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
| 18 | 17 | an32s 652 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
| 19 | 18 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 20 | 19 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
| 21 | 20 | imp 406 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
| 22 | 21 | an32s 652 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
| 23 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 24 | 9, 23 | brcnv 5867 |
. . . . . . . . 9
⊢ (𝑥◡(le‘𝐾)𝑦 ↔ 𝑦(le‘𝐾)𝑥) |
| 25 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 26 | 23, 25 | brcnv 5867 |
. . . . . . . . 9
⊢ (𝑦◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑦) |
| 27 | 24, 26 | anbi12ci 629 |
. . . . . . . 8
⊢ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) ↔ (𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥)) |
| 28 | 9, 25 | brcnv 5867 |
. . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑥) |
| 29 | 22, 27, 28 | 3imtr4g 296 |
. . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)) |
| 30 | 11, 29 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
| 31 | 30 | ralrimiva 3133 |
. . . . 5
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
| 32 | 31 | ralrimiva 3133 |
. . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
| 33 | 32 | ralrimiva 3133 |
. . 3
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
| 34 | | oduprs.d |
. . . 4
⊢ 𝐷 = (ODual‘𝐾) |
| 35 | 34 | fvexi 6895 |
. . 3
⊢ 𝐷 ∈ V |
| 36 | 33, 35 | jctil 519 |
. 2
⊢ (𝐾 ∈ Proset → (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) |
| 37 | 34, 1 | odubas 18308 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐷) |
| 38 | 34, 2 | oduleval 18306 |
. . 3
⊢ ◡(le‘𝐾) = (le‘𝐷) |
| 39 | 37, 38 | isprs 18313 |
. 2
⊢ (𝐷 ∈ Proset ↔ (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) |
| 40 | 36, 39 | sylibr 234 |
1
⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset
) |