Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(le‘𝐾) =
(le‘𝐾) |
3 | 1, 2 | isprs 17930 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
4 | 3 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
5 | 4 | r19.21bi 3132 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
6 | 5 | r19.21bi 3132 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
7 | 6 | r19.21bi 3132 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
8 | 7 | simpld 494 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥(le‘𝐾)𝑥) |
9 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
10 | 9, 9 | brcnv 5780 |
. . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑥 ↔ 𝑥(le‘𝐾)𝑥) |
11 | 8, 10 | sylibr 233 |
. . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥◡(le‘𝐾)𝑥) |
12 | 1, 2 | isprs 17930 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑧 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))) |
13 | 12 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Proset →
∀𝑧 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
14 | 13 | r19.21bi 3132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
15 | 14 | r19.21bi 3132 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
16 | 15 | r19.21bi 3132 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
17 | 16 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
18 | 17 | an32s 648 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
19 | 18 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
20 | 19 | an32s 648 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) |
21 | 20 | imp 406 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
22 | 21 | an32s 648 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) |
23 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
24 | 9, 23 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑥◡(le‘𝐾)𝑦 ↔ 𝑦(le‘𝐾)𝑥) |
25 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
26 | 23, 25 | brcnv 5780 |
. . . . . . . . 9
⊢ (𝑦◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑦) |
27 | 24, 26 | anbi12ci 627 |
. . . . . . . 8
⊢ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) ↔ (𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥)) |
28 | 9, 25 | brcnv 5780 |
. . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑥) |
29 | 22, 27, 28 | 3imtr4g 295 |
. . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)) |
30 | 11, 29 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
31 | 30 | ralrimiva 3107 |
. . . . 5
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
32 | 31 | ralrimiva 3107 |
. . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
33 | 32 | ralrimiva 3107 |
. . 3
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) |
34 | | oduprs.d |
. . . 4
⊢ 𝐷 = (ODual‘𝐾) |
35 | 34 | fvexi 6770 |
. . 3
⊢ 𝐷 ∈ V |
36 | 33, 35 | jctil 519 |
. 2
⊢ (𝐾 ∈ Proset → (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) |
37 | 34, 1 | odubas 17925 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐷) |
38 | 34, 2 | oduleval 17923 |
. . 3
⊢ ◡(le‘𝐾) = (le‘𝐷) |
39 | 37, 38 | isprs 17930 |
. 2
⊢ (𝐷 ∈ Proset ↔ (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) |
40 | 36, 39 | sylibr 233 |
1
⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset
) |