| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 2 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 3 | 1, 2 | isprs 18343 | . . . . . . . . . . . . 13
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) | 
| 4 | 3 | simprbi 496 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) | 
| 5 | 4 | r19.21bi 3250 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) | 
| 6 | 5 | r19.21bi 3250 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) | 
| 7 | 6 | r19.21bi 3250 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) | 
| 8 | 7 | simpld 494 | . . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥(le‘𝐾)𝑥) | 
| 9 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 10 | 9, 9 | brcnv 5892 | . . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑥 ↔ 𝑥(le‘𝐾)𝑥) | 
| 11 | 8, 10 | sylibr 234 | . . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑥◡(le‘𝐾)𝑥) | 
| 12 | 1, 2 | isprs 18343 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑧 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)))) | 
| 13 | 12 | simprbi 496 | . . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Proset →
∀𝑧 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 14 | 13 | r19.21bi 3250 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 15 | 14 | r19.21bi 3250 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑥 ∈ (Base‘𝐾)(𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 16 | 15 | r19.21bi 3250 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧(le‘𝐾)𝑧 ∧ ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 17 | 16 | simprd 495 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) | 
| 18 | 17 | an32s 652 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) | 
| 19 | 18 | ex 412 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ Proset ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 20 | 19 | an32s 652 | . . . . . . . . . 10
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∈ (Base‘𝐾) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥))) | 
| 21 | 20 | imp 406 | . . . . . . . . 9
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) | 
| 22 | 21 | an32s 652 | . . . . . . . 8
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑧(le‘𝐾)𝑥)) | 
| 23 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 24 | 9, 23 | brcnv 5892 | . . . . . . . . 9
⊢ (𝑥◡(le‘𝐾)𝑦 ↔ 𝑦(le‘𝐾)𝑥) | 
| 25 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 26 | 23, 25 | brcnv 5892 | . . . . . . . . 9
⊢ (𝑦◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑦) | 
| 27 | 24, 26 | anbi12ci 629 | . . . . . . . 8
⊢ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) ↔ (𝑧(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥)) | 
| 28 | 9, 25 | brcnv 5892 | . . . . . . . 8
⊢ (𝑥◡(le‘𝐾)𝑧 ↔ 𝑧(le‘𝐾)𝑥) | 
| 29 | 22, 27, 28 | 3imtr4g 296 | . . . . . . 7
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)) | 
| 30 | 11, 29 | jca 511 | . . . . . 6
⊢ ((((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) | 
| 31 | 30 | ralrimiva 3145 | . . . . 5
⊢ (((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) | 
| 32 | 31 | ralrimiva 3145 | . . . 4
⊢ ((𝐾 ∈ Proset ∧ 𝑥 ∈ (Base‘𝐾)) → ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) | 
| 33 | 32 | ralrimiva 3145 | . . 3
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧))) | 
| 34 |  | oduprs.d | . . . 4
⊢ 𝐷 = (ODual‘𝐾) | 
| 35 | 34 | fvexi 6919 | . . 3
⊢ 𝐷 ∈ V | 
| 36 | 33, 35 | jctil 519 | . 2
⊢ (𝐾 ∈ Proset → (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) | 
| 37 | 34, 1 | odubas 18337 | . . 3
⊢
(Base‘𝐾) =
(Base‘𝐷) | 
| 38 | 34, 2 | oduleval 18335 | . . 3
⊢ ◡(le‘𝐾) = (le‘𝐷) | 
| 39 | 37, 38 | isprs 18343 | . 2
⊢ (𝐷 ∈ Proset ↔ (𝐷 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑥 ∧ ((𝑥◡(le‘𝐾)𝑦 ∧ 𝑦◡(le‘𝐾)𝑧) → 𝑥◡(le‘𝐾)𝑧)))) | 
| 40 | 36, 39 | sylibr 234 | 1
⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset
) |